Skip to main content
Log in

A novel method for follow-up studies of the microcirculation in non-malignant tissue implants

  • Original Papers
  • Published:
Research in Experimental Medicine

Summary

Specimens of syngeneic spleen, myocardium, and spongious bone as well as lyophilized dura were implanted into a dorsal skinfold chamber of hamsters. Using intravital microscopy and quantitative video-image analysis, the formation of the implants microcirculation was observed for 2 weeks. The steps of revascularization were similar for spleen, myocardium, and spongiosa: After initial bleeding into the implants (12–54h), the specimens cleared up and revealed small channels devoid of blood cells (diameter 2–5 µm) 3–4 days after implantation. After 3–5 days blood flow could be observed throughout the specimens. Despite these similarities, the evolving angioarchitecture was specific for each tissue. In contrast, dura specimens were not vascularized. Histology of the implants revealed characteristic structures of the original organs 10–15 days after implantation. It is concluded that the hamster dorsal skinfold chamber provides a suitable host tissue for syngeneic implants. By this procedure, the study of the microcirculation of remote or unpredictably moving organs becomes possible over prolonged periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Albrektsson T, Linder L (1981) Intravital, long-term follow-up of autologous experimental bone grafts. Arch Orthop Traumatol Surg 98:189–193

    Google Scholar 

  2. Algire GH (1943) An adaptation of the transparent chamber technique to the mouse. J Natl Cancer Inst 4:1–11

    Google Scholar 

  3. Colantuoni A, Bertuglia S, Intaglietta M (1984) Effects of anesthesia on the spontaneous activity of the microvasculature. Int J Microcirc Clin Exp 3:13–28

    PubMed  Google Scholar 

  4. Endrich B, Asaishi K, Goetz A, Messmer K (1980) Technical report — A new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med (Berl) 177:125–134

    Google Scholar 

  5. Endrich B, Hammersen F, Goetz A, Messmer K (1982) Microcirculatory blood flow, capillary morphology and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3. J Natl Cancer Inst 68:475–485

    PubMed  Google Scholar 

  6. Endrich B, Messmer K (1984) Quantitative analysis of the microcirculation in the awake animal. In: Olszewski WL (ed) Handbook of microsurgery, vol 1. CRC Press, Boca Raton, pp 79–105

    Google Scholar 

  7. Faber JE, Harris PD, Wiegman DL (1982) Anesthetic depression of microcirculation, central hemodynamics, and respiration in decerebrated rats. Am J Physiol 243:H837-H843

    PubMed  Google Scholar 

  8. Foitzik Th, Roth H, Funk W (1985) Fibrin gluing does not delay revascularization of homologous spleen implants. Eur Surg Res 17 [Suppl 1]:78 (Abstract)

    Google Scholar 

  9. Fulmer RI, Cramer AT, Liebelt RA, Liebelt AG (1963) Transplantation of cardiac tissue into the mouse ear. Am J Anat 113:273–285

    PubMed  Google Scholar 

  10. Funk W, Intaglietta M (1983) Spontaneous arteriolar vasomotion. Prog Appl Microcirc 3:66–82

    Google Scholar 

  11. Funk W, Roth H, Foitzik Th, Endrich B (1984) Homologous spleen transplants: Neovascularization and angioarchitecture. Eur Surg Res 16:115 (Abstract)

    Google Scholar 

  12. Greenblatt M (1972) Hamster cheek pouch chamber: Homograft studies of normal and neoplastic tissues. Prog Exp Tumor Res 16:380–395

    PubMed  Google Scholar 

  13. Handler AH (1972) Studies of cardiac allograft in Syrian hamsters. Prog Exp Tumor Res 16:368–379

    PubMed  Google Scholar 

  14. Handler AH, Cosman EB (1974) Skin allograft exchange among inbred strains of hamsters. Life Sci 14:1455–1462

    PubMed  Google Scholar 

  15. Hiraoka T, Hägerstrand I, Bengmark S (1983) Attempts at autologous transplantation of sliced liver to the subcutaneous tissue. Eur Surg Res 15:37–44

    PubMed  Google Scholar 

  16. Intaglietta M, Tompkins WR (1973) Microvascular measurements by video image shearing and splitting. Microvasc Res 5:309–312

    PubMed  Google Scholar 

  17. Intaglietta M, Messmer K (1983) Editorial: Microangiodynamics, peripheral vascular resistance and the normal microcirculation. Int J Microcirc Clin Exp 2:3–10

    PubMed  Google Scholar 

  18. Ley K, Schümann K, Henrich H (1984) Microvascular permeability and blood flow in atrial homografts in the hamster cheek pouch. Int J Microcirc Clin Exp 3:29–39

    PubMed  Google Scholar 

  19. Marine D, Manley OT (1920) Homeotransplantation and autotransplantation of the spleen in rabbits. III. Further data on growth, permanence, effect of age, and partial or complete removal of the spleen. J Exp Med 32:113–133

    Google Scholar 

  20. Messmer K, Funk W, Endrich B, Zeintl H (1984) The perspectives of new methods in microcirculation research. Prog Appl Microcirc 6:77–90

    Google Scholar 

  21. Peck HM, Hoerr NL (1951) The intermediary circulation in the red pulp of the mouse spleen. Anat Rec 105:447–477

    Google Scholar 

  22. Sanders AG, Shubik P (1964) A transparent window for use in the Syrian hamster. Israel J Exp Med 11:118 (Abstract)

    Google Scholar 

  23. Sandison JC (1932) Contraction of blood vessels and observations on the circulation in the transparent chamber of the rabbit's ear. Anat Rec 54:105–127

    Google Scholar 

  24. Schümann K, Henrich H, Ley K, Heine H (1984) Morphological and functional aspects of heart homograft adaptation to hamster cheek pouch. Spontaneous pulsatile activity and ultrastructure. Blood Vessels 21:32–42

    PubMed  Google Scholar 

  25. Steinhausen M, Tillmanns H, Thederan H (1978) Microcirculation of the epimyocardial layer of the heart. Pflügers Arch 378:9–14

    Google Scholar 

  26. Tavassoli M, Ratzan RJ, Crosby WH (1973) Studies on regeneration of heterologue spleen autotransplants. Blood 41:701–709

    PubMed  Google Scholar 

  27. Zeintl H, Funk W, Endrich B, Messmer K (1984) Kapillarlängenmessung — Ein Vergleich zwischen einer „exakten“ und einer stereologischen, d.h. statistischen Methode. In: Kropatsch W (Hrsg) Mustererkennung. Springer, Berlin Heidelberg New York, S 70–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funk, W., Endrich, B. & Messmer, K. A novel method for follow-up studies of the microcirculation in non-malignant tissue implants. Res. Exp. Med. 186, 259–270 (1986). https://doi.org/10.1007/BF01852303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01852303

Key words

Navigation