Skip to main content
Log in

Limited hemodilution in hemorrhagic shock in dogs: Effects on central hemodynamics and the microcirculation in skeletal muscle

  • Published:
Research in Experimental Medicine

Summary

The keyproblem of hemorrhagic shock consists in decreased tissue nutrition and tissue drainage from metabolites with subsequent hypoxic cellular damage. In two groups of 50 dogs the effect of whole blood (n = 30) versus hemodilution with dextran-60 (n = 20) was evaluated from central hemodynamics, capillary blood flow and transcapillary exchange from tissue to blood in skeletal muscle by use of a double isotope technique. Following a period of hemorrhagic hypotension either all the shed blood or dextran-60 were infused. Hemodilution with dextran produced a decrease in hematocrit to 20%, lowered effeciently blood viscosity and TPR and increased cardiac output to 160% of control. Capillary blood flow and exchange were nearly doubled as compared to the control level. Retransfusion of blood caused only transient normalization with rapid deterioration in central and peripheral hemodynamics, together with an increase in blood viscosity. The viscosity depressant effect of hemodilution is discussed as key factor causing the better immediate response to dextran infusion in hemorrhagic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AVDO2 :

arteriovenous oxygen difference (percent saturation)

CO:

cardiac output

HCT:

large vessel hematocrit

MAP:

mean arterial pressure

c.v.PO2 :

oxygen partial pressure in centralvenous blood

PSp:

permeability-surface area product

TPR:

total peripheral resistance

References

  1. Appelgren, K. L.: Effect of perfusion pressure and hematocrit on capillary flow and transport in hyperemic skeletal muscle of the dog. Microvasc. Res.4, 231 (1972).

    PubMed  Google Scholar 

  2. Appelgren, K. L.: Perfusion and diffusion in shock. Acta physiol. scand., Suppl.378 (1972).

  3. Appelgren, K. L., Lewis, D. H.: Capillary flow and capillary transport in dog skeletal muscle after induced intravascular RBC-aggregation and disaggregation. Europ. Surg. Res.2, 161 (1970).

    Google Scholar 

  4. Appelgren, K. L., Lewis, D. H.: Capillary flow and capillary transport in dog skeletal muscle in hemorrhagic shock. Europ. Surg. Res.4, 29 (1972).

    Google Scholar 

  5. Baeckström, P., Folkow, B., Löfving, B., Kovach, A. G. B., Öberg, B.: Evidence of “plugging” of the microcirculation following acute hemorrhage. In: Ditzel and Lewis, 6th Europ. Conf. Microcirculation, Aalborg 1970, pp. 16–22. Basel: Karger 1971.

    Google Scholar 

  6. Bond, T. P., Guest, M. M.: Intravascular behaviour of red cells in the microcirculation. In: Meßmer, K., Schmid-Schönbein, H.: Hemodilution. Theoretical basis and clinical application. Int. Symp. Rottach-Egern 1971, p. 46. Basel: Karger 1972.

    Google Scholar 

  7. Bond, R. F., Manley, E. S., Jr., Green, H. D.: Cutaneous and skeletal muscle vascular responses to hemorrhage and irreversible shock. Amer. J. Physiol.212, 488 (1967).

    PubMed  Google Scholar 

  8. Burri, C., Allgöwer, M.: Der therapeutische Effekt verschiedener Plasmaexpander im experimentellen hämorrhagischen Schock. Chirurg36, 1 (1965).

    PubMed  Google Scholar 

  9. Chien, S.: Role of sympathetic nervous system in hemorrhage. Physiol. Rev.47, 214 (1967).

    PubMed  Google Scholar 

  10. Chien, S.: Blood rheology and its relation to flow resistance and transcapillary exchange with special reference to shock. Advanc. Microcirc.2, 89 (1969).

    Google Scholar 

  11. Chien, S.: Present state of blood rheology. In: Meßmer, K., Schmid-Schönbein, H.: Hemodilution. Theoretical basis and clinical application. Int. Symp. Rottach-Egern 1971, pp. 1–45. Basel: Karger 1972.

    Google Scholar 

  12. Crowell, J. W., Ford, R. G., Lewis, V. M.: Oxygen transport in hemorrhagic shock as a function of the hematocrit ratio. Amer. J. Physiol.196, 1033 (1959).

    PubMed  Google Scholar 

  13. Crowell, J. W., Smith, E. E.: Oxygen deficit and irreversible hemorrhagic shock. Amer. J. Physiol.206, 313 (1964).

    PubMed  Google Scholar 

  14. Cunningham, J. N., Shires, G. T., Wagner, Y.: Cellular transport defects in hemorrhagic shock. Surgery70, 215 (1971).

    PubMed  Google Scholar 

  15. Dillon, J., Lynch, L. J., Jr., Meyers, R., Butcher, H. R., Moyer, C. A.: A bioassay of treatment of hemorrhagic shock. I. The role of blood, Ringer's solution with lactate, and macromolecules (dextran and hydroxyethyl starch) in the treatment of hemorrhagic shock in anesthetized dog. Arch. Surg.93, 537 (1966).

    PubMed  Google Scholar 

  16. Djojosugito, A. M., Folkow, B., Öberg, B., White, S.: A comparison of blood viscosity measured in vitro and in a vascular bed. Acta physiol. scand.78, 70 (1970).

    PubMed  Google Scholar 

  17. Duling, B. R., Berne, R. M.: Oxygen and the local regulation of blood flow: Possible significance of longitudinal gradients in arterial blood oxygen tension. Circulat. Res.28, Suppl. I, 65 (1971).

    PubMed  Google Scholar 

  18. Fahraeus, R., Lundqvist, T.: The viscosity of the blood in narrow capillary tubes. Amer. J. Physiol.96, 562 (1931).

    Google Scholar 

  19. Foster, R. E.: Diffusion of gases. In: Handbook of Physiology, Sect. 3: Respiration, Vol. I, p. 839. Washington D. C.: Amer. Physiol. Soc. 1964.

    Google Scholar 

  20. Fronek, K., Zweifach, B. W.: Changes of splanchnic hemodynamics in hemorrhagic hypotension and endotoxemia. J. Surg. Res.11, 232 (1971).

    PubMed  Google Scholar 

  21. Gaehtgens, P., Uekermann, U.: The apparent viscosity of blood in different vascular compartements of the autoperfused canine foreleg, and its variation with hematocrit. Abstracts Europ. Soc. Microcirculation 7th Conf. on Microcirculation, Aberdeen 1972, p. 18.

  22. Gelin, L. E., Bergentz, S. E., Helander, C. G., Linder, E., Nilsson, N. J., Rudenstam, C. M.: Hemodynamic consequences from increased viscosity of blood. In: A. L. Copley, Hemorheology, p. 721. Oxford-New York: Pergamon Press 1968.

    Google Scholar 

  23. Goldstone, J., Hutchins, P. M., Schmid-Schönbein, H., Urschel, Ch., Sonnenblick, E., Wells, R.: Correlation of microvascular and rheologic factors in hemorrhagic shock. In: Ditzel and Lewis, 6th Europ. Conf. Microcirculation, Aalborg 1970, p. 150. Basel: Karger 1971.

    Google Scholar 

  24. Gosselin, R. E., Audino, L. F.: Muscle blood flow and functional capillary density evaluated by isotope clearance. Pflügers Arch.322, 197 (1971).

    Google Scholar 

  25. Gray, S. D.: Microscopic observation of skeletal muscle, vascular responses to vasopressors during severe hemorrhagic hypotension. J. Trauma12, 147 (1972).

    PubMed  Google Scholar 

  26. Gruber, U. F.: Blutersatz, p. 99. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  27. Gruber, U. F.: Blutersatz, p. 164. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  28. Halmagyi, D. F., Kennedy, M., Goodman, A. H.: Response to dextran in posthemorrhagic shock after combined adrenergic receptor blockade. J. appl. Physiol.30, 186 (1971).

    PubMed  Google Scholar 

  29. Hardaway, R. M.: The fallacy of hemorrhagic shock models in dogs. In: Ditzel and Lewis, Microcirculatory approaches to current therapeutic problems. Symposia 6th Europ. Conf. Microcirculation, Aalborg 1970, p. 24. Basel: Karger 1971.

    Google Scholar 

  30. Honig, C. R., Frierson, J. L., Nelson, C. N.: O2-transport and VO2 in resting muscle: significance for tissue-capillary exchange. Amer. J. Physiol.220, 357 (1971).

    PubMed  Google Scholar 

  31. Jesch, F., Klövekorn, W. P., Sunder-Plassmann, L., Meßmer, K.: Die Bedeutung des Uptake im experimentellen hämorrhagischen Schock. Res. exp. Med.157, 267 (1972).

    Google Scholar 

  32. Kety, S. S.: Determinants of tissue oxygen tension. Fed. Proc.13, 666 (1957).

    Google Scholar 

  33. Koven, J. H., Jambunathan, G., Fung Lo, S.: The improvement of capillary transport capacity in a low flow state. Europ. Surg. Res.4, 296 (1972).

    Google Scholar 

  34. Lassen, N. A., Lindbjerg, I. F., Dahn, S.: Validity of the Xenon-133 method for measurement of muscle blood flow evaluated by simultaneous venous occlusion plethysmography. Circulat. Res.16, 287 (1965).

    PubMed  Google Scholar 

  35. Lewis, D. H.: Measurement of capillary flow and capillary transport. In: Meßmer, K., Schmid-Schönbein, H., Hemodilution. Theoretical basis and clinical application, Int. Symp. Rottach-Egern 1971, p. 118. Basel: Karger 1972.

    Google Scholar 

  36. Lewis, D. H., Mellander, S.: Competitive effects of sympathetic control and tissue metabolites on resistance and capacitance vessels and capillary filtration in skeletal muscle. Acta physiol. scand.56, 162 (1962).

    Google Scholar 

  37. Meiselman, H. J., Merrill, E. W., Salzman, E. W.: Effect of dextran on rheology of human blood: low shear viscometry. J. appl. Physiol.22, 280 (1967).

    Google Scholar 

  38. Mela, L., Bacalzo, L. V., Jr., Miller, L. D.: Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Amer. J. Physiol.220, 571 (1971).

    PubMed  Google Scholar 

  39. Merrill, E. W., Pelletier, G. A.: Viscosity of human blood: transition from Newtonian to non-Newtonian. J. appl. Physiol.23, 178 (1967).

    PubMed  Google Scholar 

  40. Meßmer, K.: Die Grundlagen der modernen Schocktherapie. Münch. med. Wschr.112, 357 (1970).

    Google Scholar 

  41. Meßmer, K., Brendel, W.: Pathophysiologische Aspekte des hypovolämischen, kardiogenen und bakteriotoxischen Schocks. Med. Welt22, 1159 (1971).

    PubMed  Google Scholar 

  42. Meßmer, K., Klövekorn, W. P., Sunder-Plassmann, L., Brendel, W.: Studies concerning the effect of trasylol in a standardized model of hemorrhagic shock in dogs. In: W. Brendel, G. L. Haberland, New aspects in trasylol therapy, p. 25. Stuttgart: Schattauer 1972.

    Google Scholar 

  43. Meßmer, K., Lewis, D. H., Sunder-Plassmann, L., Klövekorn, W. P., Mendler, N., Holper, K.: Acute normovolemic hemodilution. Changes of central hemodynamics and microcirculatory flow in skeletal muscle. Europ. Surg. Res.4, 55 (1972).

    Google Scholar 

  44. Meßmer, K., Sunder-Plassmann, L., Klövekorn, W. P., Holper, K.: Circulatory significance of hemodilution: Rheological changes and limitations. Advanc. Microcirc.4, 1 (1972).

    Google Scholar 

  45. Miller, L. D., Oski, F. A., Diaco, J. F., Sugerman, H. J., Gottlieb, A. J., Davidson, D., Delivoria-Papadopoulos, M.: The affinity of hemoglobin for oxygen: its control and in vivo significance. Surgery68, 187 (1970).

    PubMed  Google Scholar 

  46. Renkin, E. M.: Exchange of substances through capillary walls. In: Wolstenholme, Knight, Circulatory and respiratory mass transport. A Ciba Foundation Symposion, p. 50. London: Churchill 1969.

    Google Scholar 

  47. Renkin, E. M.: The nutritional shunt-flow hypothesis in skeletal muscle circulation. Circulat. Res.28, Suppl. I, 21 (1971).

    Google Scholar 

  48. Replogle, R.: Hemodynamic compensation of acute changes of the hemoglobin concentration. In: K. Meßmer, H. Schmid-Schönbein, Hemodilution. Theoretical basis and clinical application. Int. Symp. Rottach-Egern 1971, p. 160. Basel: Karger 1972.

    Google Scholar 

  49. Richardson, D. R., Zweifach, B. W.: Pressure relationships in the macro- and microcirculation of the mesentery. Microvasc. Res.2, 474 (1970).

    PubMed  Google Scholar 

  50. Roughton, F. J. W.: Transport of oxygen and carbon dioxide. In: Handbook of Physiology, Sect. 3: Respiration, Vol. I, p. 767. Washington D. C.: Amer. Physiol. Soc. 1964.

    Google Scholar 

  51. Schmid-Schönbein, H., Klose, J., Volger, E.: Effect of colloidal plasma substitutes on microrheology of human blood. In: K. Meßmer, H. Schmid-Schönbein, Hemodilution. Theoretical basis and clinical application. Int. Symp. Rottach-Egern 1971, p. 66. Basel: Karger 1972.

    Google Scholar 

  52. Schmid-Schönbein, H., Wells, R.: Fluid drop like transition of erythrocytes under shear. Science165, 288 (1969).

    PubMed  Google Scholar 

  53. Skinner, N. S., Costin, J. C.: Interactions between oxygen, potassium and osmolality in regulation of skeletal muscle blood flow. Circulat. Res.28, 73 (1971).

    PubMed  Google Scholar 

  54. Stainsly, W. N., Otis, A. B.: Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle. Amer. J. Physiol.206, 858 (1964).

    PubMed  Google Scholar 

  55. Sunder-Plassmann, L., Klövekorn, W. P., Meßmer, K., Brendel, W.: Microcirculatory pattern in hemorrhagic shock in dogs. In: W. Brendel, G. L. Haberland, New aspects in trasylol therapy, p. 33. Stuttgart: Schattauer 1972.

    Google Scholar 

  56. Sunder-Plassmann, L., Klövekorn, W. P., Holper, K., Hase, U., Meßmer, K.: The physiological significance of acutely induced hemodilution. In: Ditzel and Lewis, 6th Europ. Conf. Microcirculation, Aalborg 1970, p. 23. Basel: Karger 1971.

    Google Scholar 

  57. Sunder-Plassmann, L., Klövekorn, W. P., Meßmer, K.: Hemodynamic and rheological changes induced by hemodilution with colloids. In: K. Meßmer, H. Schmid-Schönbein, Hemodilution. Theoretical basis and clinical application. Int. Symp. Rottach-Egern 1971, p. 184. Basel: Karger 1972.

    Google Scholar 

  58. Sunder-Plassmann, L., Klövekorn, W. P., Meßmer, K.: Veränderungen der Hämodynamik und Fließeigenschaften des Blutes bei Anwendung künstlicher Kolloide. Workshop Timmendorfer Strand: Akute Volumen- und Substitutionstherapie mit Blut, Blutbestandteilen, Plasmaersatz und Elektrolyten, p. 139. München: Lehmann 1972.

    Google Scholar 

  59. Usami, S., Chien, S.: Shear deformation of red cell ghosts. Biorheology9, 166 (1972).

    Google Scholar 

  60. Wangensteen, St. L., Glenn, Th. M., Lefer, A. M., Ferguson, W. W., Morris, J. R.: Circulatory responses to the infusion of splanchnic lysosomal enzymes. Europ. Surg. Res.4, 368 (1972).

    Google Scholar 

  61. Wells, R., Schmid-Schönbein, H.: Red cell deformation and fluidity of concentrated cell suspensions. J. appl. Physiol.27, 213 (1969).

    PubMed  Google Scholar 

  62. Zweifach, B. W.: Local regulation of capillary pressure. Circulat. Res.28, 129 (1971).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Dr. R. Zenker on his 70th anniversery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunder-Plassmann, L., Jesch, F., Klövekorn, W.P. et al. Limited hemodilution in hemorrhagic shock in dogs: Effects on central hemodynamics and the microcirculation in skeletal muscle. Res. Exp. Med. 159, 167–182 (1973). https://doi.org/10.1007/BF01851544

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01851544

Key words

Navigation