Skip to main content
Log in

The effect of severe brainstem injury on heart rate and blood pressure oscillations

  • Research Paper
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

To determine whether an intact brainstem is essential for the generation of neurogenically mediated fluctuations of R—R intervals and blood pressure, three patients with cerebellar lesions causing severe brainstem compression or death, one patient with a large pontine infarct and one patient with a pontine haemorrhage, were studied. Time—frequency maps (based on a modified Wigner distribution) were constructed from blood pressure and R—R interval signals in these patients with brainstem injury and were compared with maps of normal control subjects. Low frequency sympathetically mediated rhythms (0.01–0.12 Hz) in systolic and diastolic pressure remained detectable but attenuated in patients with brainstem injury whereas there was an almost complete loss of normal R—R intervals rhythmicity over 0.01 to 0.5 Hz range. These data suggest that fluctuations in R—R intervals require an intact brainstem, whereas low frequency ∼0.06 ± 0.02 Hz blood pressure rhythms may be preserved by spinal sympathetic circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schondorf R. New investigations of autonomic nervous system function.J Clin Neurophysiol 1993;10: 28–38.

    PubMed  Google Scholar 

  2. Kitney RI. An analysis of the nonlinear behaviour of the human thermal vasomotor control system.J Theor Biol 1975;52: 231–248.

    PubMed  Google Scholar 

  3. Novak V, Novak P, deChamplain J, LeBlanc R, Martin R, Nadeau R. The effect of the respiration on heart rate and blood pressure fluctuations.J Appl Physiol 1993;74: 617–626.

    PubMed  Google Scholar 

  4. Toska K, Eriksen M. Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans.J Physiology 1993;472: 501–512.

    Google Scholar 

  5. Cerutti C, Gustin MP, Paultre CZ, Lo M, Julien C, Vincent M, Sassard J. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach.Am J Physiol 1991;261: H1292-H1299.

    PubMed  Google Scholar 

  6. Persson PB, Stauss H, Chung O, Wittmann U, Unger T. Spectrum analysis of sympathetic nerve activity and blood pressure in conscious rat.Am J Physiol 1992;263: H1348–1355.

    PubMed  Google Scholar 

  7. Preis G, Polosa C. Patterns of sympathetic neuron activity associated with Mayer waves.Am J Phys 1974;226: 726–730.

    Google Scholar 

  8. Japundzic N, Grichios ML, Zitoun P, Laude D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers.J Autonom Nerv Syst 1990;30: 90–100.

    Google Scholar 

  9. De Boer RW, Karemaker JM, Strackee J. Hemodynamic fluciuations and baroreflex sensitivity in humans: a beat-to-beat analysis.Am J Physiol 1987;253: 680–689.

    Google Scholar 

  10. Madwed JB, Cohen RJ. Heart rate response to hemorrhageinduced 0.05 Hz oscillations in arterial pressure in conscious dog.Am J Physiol 1991;260: H1248-H1253.

    PubMed  Google Scholar 

  11. Kitney RI, Fulton T, McDonald AH, Linkens DA. Transient interactions between blood pressure respiration and heart rate in man.J Biomed Eng 1985;7: 217–224.

    PubMed  Google Scholar 

  12. Lombardi F, Montano N, Finocchiaro ML, Ruscone TG, Baselli G, Cerutti S, Malliani A. Spectral analysis of sympathetic discharge in decerebrate cats.J Autonom Nerv Syst 1990;30: S97-S100.

    Google Scholar 

  13. Novak V, Novak P, Schondorf R. Accuracy of long-duration noninvasive measurement of finger arterial pressure using the Finapres: a spectral analysis approach.J Clin Monitoring 1994;10: 118–126.

    Google Scholar 

  14. Oppenheim AV, Schafer RW.Digital Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1985; 532–562.

    Google Scholar 

  15. Novak P, Novak V. Time-frequency mapping of the heart rate, blood pressure and respiratory signals.Med Biol Eng Comput 1993;31: 103–110.

    PubMed  Google Scholar 

  16. Sands KEF, Appel ML, Lilly LS, Schoen FJ, Mudge GH, Cohen RJ. Power spectrum analysis of heart rate variability in human cardiac transplant recipients.Circulation 1989;79: 76–82.

    PubMed  Google Scholar 

  17. Omboni S, Parati G, Frattola A, Mutti E, DiRienzo M, Castiglioni P, Mancia G. Spectral and sequence analysis of finger blood pressure variability.Hypertension 1993;22: 26–33.

    PubMed  Google Scholar 

  18. Novak V, Novak P, deChamplain J, Nadeau R. Altered cardiorespiratory transfer in hypertension.Hypertension 1994;23: 104–113.

    PubMed  Google Scholar 

  19. Eckberg DL. Respiratory sinus arrhythmia and other human cardiovascular neural periodicities. In: Lenfant C, Pack A, Dempsey JA, eds.Regulation of Breathing, 2nd ed. Marcel-Dekher; 1994, 669–740.

  20. Kita Y, Ishise J, Yoshita Y, Aizawa Y, Yoshio H, Minagawa F, Shimizu M, Takeda R. Power spectral analysis of heart rate and arterial blood pressure oscillation in brain-dead patients.J Autonom Nerv System 1993;44: 101–107.

    Google Scholar 

  21. Shibata H, Aibiki M, Shirakawa Y, Ogli K. Dopamine infused continuously at high concentration with a low rate affects arterial blood pressure fluctuation waves.Crit Care Med 1993;21: 801–804.

    PubMed  Google Scholar 

  22. Hayoz D, Tardy Y, Rutschmann B, Mignot JP, Achakri H, Feihl F, Meister JJ, Waeber B, Brunner HR. Spontaneous diameter oscillations of the radial artery in humans.Am J Physiol 1993;264: H2080-H2084.

    PubMed  Google Scholar 

  23. Richter DW, Spyer KM, Gilber MP, Lawson EE, Bainton CR, Wilhelm Z. On the existence of a common cardiorespiratory network. In: Koepchen HP, Hupaniemi T, eds.Cardiorespiratory and Motor Coordination. Springer Verlag, 1991; 118–131

  24. Inoue K, Miyake S, Kumashiro M, Ogata H, Yoshimura O. Power spectral analysis of heart rate variability in traumatic quadriplegic humans.Am J Physiol 1990;258: H1722-H1726.

    PubMed  Google Scholar 

  25. Inoue K, Miyake S, Kumashiro M, Ogata H, Ueta T, Akatsu M. Power spectral analysis of blood pressure variability in traumatic quadriplegic humans.Am J Physiol 1991;260: H842-H847.

    PubMed  Google Scholar 

  26. Mathias CJ, Frankel HL. Autonomic disturbances in spinal cord lesions. In: Bannister R, Mathias CJ, eds.Autonomic Failure: A textbook of clinical disorders of the autonomic nervous system. Oxford: Oxford University Press, 1992; 839–881

    Google Scholar 

  27. Gebber GL. Central determinants of sympathetic nerve discharge. In: Loewy A, Spyer KM, eds.Central Regulation of Autonomic Functions. New York: Oxford University Press, 1990; 126–144.

    Google Scholar 

  28. Allen AM, Adams JM, Guyenet PG. Role of the spinal cord in generating the 2- to 6-Hz rhythm in rat sympathetic outflow.Am J Physiol 1993;264: R398-R945.

    Google Scholar 

  29. Evans BM. Patterns of arousal in comatose patients.J Neurol Neurosurg Psychiatry 1976;39: 392–402.

    PubMed  Google Scholar 

  30. Leipzig TJ, Lowenshon RI. Heart rate variability in neurosurgical patients.Neurosurgery 1986;19: 356–362.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, V., Novak, P., deMarchie, M. et al. The effect of severe brainstem injury on heart rate and blood pressure oscillations. Clinical Autonomic Research 5, 24–30 (1995). https://doi.org/10.1007/BF01845495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01845495

Key words

Navigation