Skip to main content
Log in

Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz

I. Die Bedeutung des Extracellulärraumes für die Einstellung der Natrium-Tagesbilanz

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

24 hour sodium and potassium balances, ECF (inulin space) and GFR (inulin clearance) were determined in trained dogs which had been maintained on high salt or low salt diets. Special attention was directed toward the transition period when animals were switched either from a low salt to a high salt intake, or vice versa.

1. When salt depleted dogs were switched to a salt intake of 1.7 or 14 mEq/kg and day, ECF increased to a maximum of 22±1.7% of body weight. This value was reached within 1–2 days when the higher salt intake was used, and within 8–9 days when the lower amount was added to the food.

2. When, in these same dogs, salt feeding was stopped and food with about 0,5 mEq/kg and day (sodium poor diet) was given, the ECF remained unaltered for about 2 weeks. After this period it decreased continously, reaching a new steady state value of 16% of body weight within 4 months.

3. GFR, measured at 8 a.m. and before feeding, did not change despite these variations in ECF.

4. With high sodium diet (14 mEq/kg and day) a negative potassium balance appeared. This was greatest on the first day. During a 5 day period the potassium loss was 5 times greater than the extracellular potassium store, indicating an intracellular depletion.

5. These results may imply an important role for body fluid volumes in the regulation of salt balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Black, D. A., P. Platt, andS. W. Stanbury: Regulation of sodium excretion in normal and salt-depleted subjects. Clin. Sci.9, 205 (1950).

    Google Scholar 

  2. Epper, F., O. Harth, W. Kreienberg u.D. P. Mertz: Die Einstellung des Fließgleichgewichtes von Inulin im extrazellulären Raum. Z. ges. exp. Med.126, 450 (1955).

    PubMed  Google Scholar 

  3. Gaudino, M., andM. F. Levitt: Inulin space as a measure of extracellular fluid. Amer. J. Physiol.157, 387 (1949).

    Google Scholar 

  4. GEIGY Tabellen. Documenta GHIGY, Wissenschaftl. Tabellen, 6. Auflage.

  5. Green, D. M., andA. Faragh: Influence of sodium load on sodium excretion. Amer. J. Physiol.158, 444 (1949).

    Google Scholar 

  6. Irvine, R. O. H., S. J. Saunders, M. D. Milne, andM. A. Crawford: Gradients of potassium and hydrogen ion in potassium-deficient voluntary muscle. Clin. Sci.20, 1 (1960).

    Google Scholar 

  7. Ladd, M.: Renal excretion of sodium and water in man as affect by prehydration, saline infusion, pitression and thiomerin. J. appl. Physiol.4, 602 (1952).

    PubMed  Google Scholar 

  8. ——, andL. G. Raisz: Response of the normal dog to dietary sodium chloride. Amer. J. Physiol.159, 149 (1949).

    PubMed  Google Scholar 

  9. Leaf, A., W. T. Couter, andL. H. Newburgh: Some effects of variation in sodium intake and of different sodium salts in normal subjects. J. clin. Invest.28, 1082 (1949b).

    Google Scholar 

  10. Markeley, K., M. Bocanegra, G. Morales, andM. Chiaport: Oral sodium loading in normal individuals. J. clin. Invest.36, 303 (1957).

    PubMed  Google Scholar 

  11. Mertz, D. P.: Die Nierenhämodynamik als natriumbewahrendes Prinzip. Z. ges. exp. Med.136, 11 (1962).

    PubMed  Google Scholar 

  12. Moll, H. Ch., u.K. R. Koczorek: Über den Einfluß eines Aldosteron-Antagonisten (SC 8109) auf die Resorption von Natrium aus dem Magen-Darm-Trakt von Ratten. Klin. Wschr.40, 825 (1962).

    PubMed  Google Scholar 

  13. Rector, F. C., jr.,G. v. Giesen, F. Kill, andD. W. Seldin: Influence of expansion of extracellular volume on tubular reabsorption of sodium independent of changes in glomerular filtration rate and aldosteron activity. J. clin. Invest.43, 341 (1964).

    PubMed  Google Scholar 

  14. Roe, J. H., J. H. Epstein, andN. P. Goldstein: A photometric method for the determination of inulin. J. biol. Chem.178, 839 (1949).

    Google Scholar 

  15. Selkurt, E. E., andR. S. Post: Renal clearance of sodium in the dog: Effect of increasing sodium load in reabsorptive mechanism. Amer. J. Physiol.162, 639 (1950).

    PubMed  Google Scholar 

  16. Stein, R. M., B. H. Levitt, M. H. Goldstein, J. G. Porush, A. B. M. Eisner, andM. K. Levitt: The effects of salt restriction on the renal concentrating operation in normal, hydropenic man. J. clin. Invest.41, 2101 (1962).

    PubMed  Google Scholar 

  17. Tait, J. F., S. A. Simpson, andH. M. Grundy: The effect of adrenal extract on mineral metabolism. Lancet262, 122 (1952).

    Article  Google Scholar 

  18. Wesson, L. G.: Electrolyte excretion in relation to diurnal cycles of renal function. Medicine (Baltimore)43, 547 (1947).

    Google Scholar 

  19. White, H. L., andD. Rolf: Inulin space as a function of equilibration time. Amer. J. Physiol.185, 152 (1956).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhardt, H.W., Behrenbeck, D.W. Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. Pflügers Arch 295, 266–279 (1967). https://doi.org/10.1007/BF01844106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01844106

Navigation