Skip to main content
Log in

Localization of epitopes and functional effects of two novel monoclonal antibodies against skeletal muscle myosin

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Two skeletal myosin monoclonal antibodies, raised against human skeletal myosin, were used to study the correlation between function, primary and tertiary structure of S-1 prepared from rabbit skeletal myosin. The heavy chain of S-1 is cleaved into three fragments by trypsin—27 kDa, 50 kDa and 20 kDa—aligned in this order from the N-terminus. The epitope of the first antibody was assigned to the N-terminal 1–23 amino acid stretch of S-1, since it reacted with the 27 kDa N-terminal tryptic fragment of S-1 but not with a derivative of the 27 kDa fragment, which lacks the above amino acid stretch. The epitope of the second antibody was assigned to the 3 kDa N-terminal region of the central 50 kDa domain of S-1. This assignment was based on proteolytic and photochemical cleavage of S-1 and on the labelling of its N-terminus by a specific antibody. The antibodies were visualized binding to the myosin head on electron micrographs of rotary-shadowed complexes of antibodies with myosin. Measurements on the micrographs indicated that the distances between the head-tail junction of myosin and the ‘anti-27 K’ and ‘anti-50 K’ epitopes are 14 nm and 17 nm, respectively. Both antibodies have a high affinity to S-1. The affinity of the ‘anti-50 K’ to S-1 decreased upon actin binding, while that of the ‘anti-27 K’ was not affected by binding of S-1 to F-actin. The ‘anti-50 K’ antibody inhibited the K+ (EDTA) and the actin-activated ATPase activity of S-1, while the ‘anti-27 K’ had no effect. The results indicate that either the epitope of the ‘anti-50 K’ is near to the actin or to the ATP-binding sites of S-1, or that there is communication, expressed as propagated conformational changes, between these sites and the epitope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applegate, D. &Reisler, E. (1983) Protease-sensitive regions in myosin subfragment-1.Proc. Natl. Acad. Sci. USA.80, 7109–12.

    PubMed  Google Scholar 

  • Balint, M., Wolf, I., Tarcsafalvi, A., Gergely, J. &Sreter, F. (1978) Location of SH1 and SH2 in heavy-chain segment of heavy-meromyosin.Arch. Biochem. Biophys. 190, 793–99.

    Article  PubMed  Google Scholar 

  • Botts, J., Takashi, R., Torgeson, P., Hozumi, T., Muhlrad, A., Mornet, D. &Morales, M. F. (1984) On the mechanism of energy transduction in myosin subfragment-1,Proc. Natl. Acad. Sci. USA 81, 2060–4.

    PubMed  Google Scholar 

  • Botts, J., Thomason, J. F. &Morales, M. F. (1989) On the origin and transmission of force in actomyosin subfragment-1.Proc. Natl. Acad. Sci. USA 86, 2204–8.

    PubMed  Google Scholar 

  • Bruck, C., Drebim, J. A., Glimeur, C. &Portetelle, D. (1986) Purification of mouse MAbs from ascitic fluid by DEAE affi-gel blue chromatography.Methods Enzymol. 121, 587–96.

    PubMed  Google Scholar 

  • Burke, M. &Sivamarakrishnan, M. (1986) Substructure of skeletal myosin subfragment 1. Preferential destabilization of a domain by methanol and its effect on catalytic activity.J. Biol. Chem. 261, 12330–6.

    PubMed  Google Scholar 

  • Burnette, W. N. (1981) Western blotting — electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose.Anal. Biochem,112, 195–203.

    Article  PubMed  Google Scholar 

  • Chaussepied, P., Mornet, D., Audermard, E., Kassab, R., Goodearl, A. J., Levine, B. A. &Trayer, I. P. (1986a) Properties of the alkali light-chain-20-kilodalton fragment complex from skeletal myosin heads.Biochemistry 25, 4540–47.

    Article  PubMed  Google Scholar 

  • Chaussepied, P., Mornet, D., Audermard, E., Derancourt, J. &Kassab, R. (1986b) Abolition of ATPase activities of skeletal myosin subfragment 1 by a new selective proteolytic cleavage within the 50-kilodalton heavy chain segment.Biochemistry 25, 1134–40.

    Article  PubMed  Google Scholar 

  • Cremo, C., Grammer, J., Long, G. T., &Yount, R. (1988) Tetrameric vanadate and UV light cleaves myosin subfragment-1 heavy chain at two sites.J. Cell. Biol. 107, 257a.

    Article  Google Scholar 

  • Dan-Goor, M., Kessel, M., Silberstein, L. &Muhlrad, A. (1988) Mapping of myosin S-1 with monoclonal antibodies.J. Muscle Res. Cell Motility 9, 79.

    Google Scholar 

  • Degani, Y. &Patchornik, A. (1974) Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues.Biochemistry 13, 1–11.

    Article  PubMed  Google Scholar 

  • Deutsch, V., Biadsi, S., Eldor, A., Muhlrad, A. &Kahane, I. (1990) Characterization of monoclonal antibodies to human platelet myosin that recognize highly conserved epitopes within the 50 K fragment of myosin subfragment-1.Biochim. Biophys. Acta (in press).

  • Flicker, P. F., Peltz, G., Sheetz, M. P., Parham, P. &Spudich, J. A. (1985) Site-specific inhibition of myosin-mediated motilityin vitro by monoclonal antibodies.J. Cell. Biol. 100, 1024–30.

    Article  PubMed  Google Scholar 

  • Jameson, B. &Wolf, H. (1988) The antigenic index: a novel algorithm for predicting antigenic determinants.Comput. Appl. Biosci. (CABIOS) 4, 181–6.

    Google Scholar 

  • Kearney, J. F., Radbruch, A., Liesegan, B. &Rajewsky, B. (1979) New mouse myeloma cell-line that has lost immunoglobin expression but permits the construction of antibody-secreting hybrid cell-lines.J. Immunol. 123, 1548–50.

    PubMed  Google Scholar 

  • Lowey, S., Slayter, H. S., Weeds, A. G. &Baker, H. (1969) Substructure of myosin molecule. 1. Subfragments of myosin by enzymic degradation.J. Mol. Biol. 42, 1–29.

    Article  PubMed  Google Scholar 

  • Mahmood, R., &Yount, R.G. (1984) Photochemical probes of the active-site of myosin.J. Biol. Chem. 259, 12956–9.

    PubMed  Google Scholar 

  • Mocz, G. (1989) Vanadate-mediated photocleavage of rabbit skeletal myosin.Eur. J. Biochem. 179, 373–8.

    Article  PubMed  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981) Structure of the actin-myosin interface.Nature (London) 292, 301–6.

    Google Scholar 

  • Mornet, D., Pantel, P., Audemard, E., Derancourt, J. &Kassab, R. (1985) Molecular movements promoted by the metal nucleotides in the heavy-chain regions of myosin heads from skeletal. muscle.J. Mol. Biol. 183, 479–89.

    Article  PubMed  Google Scholar 

  • Mornet, D., Pantel, P., Audemard, E. &Kassab, R. (1979) The limited tryptic cleavage of chymotryptic S1: An approach to the characterization of the active site in myosin heads.Biochem. Biophys. Res. Commun. 89, 925–32.

    Article  PubMed  Google Scholar 

  • Mornet, D., Ue, K. &Morales, M. F. (1984) Proteolysis and the domain organization of myosin subfragment 1.Proc. Natl. Acad. Sci. USA 81, 736–9.

    PubMed  Google Scholar 

  • Muhlrad, A. (1989) Isolation and characterization of the N-terminal 23 kDa fragment of myosin subfragment 1.Biochemistry 28, 4002–10.

    Article  PubMed  Google Scholar 

  • Muhlrad, A. &Chaussepied, N. (1989) Effect of nucleotides, temperature and actin on the digestion of myosin S-1 by thermolysin.Biophys. J. 55, 40a.

    Google Scholar 

  • Muhlrad, A., Kasprzak, A. A., Ue, K., Ajtai, K. &Burghardt, T. P. (1986) Characterization of the isolated 20-kDa and 50-kDa fragments of the myosin head.Biochim. Biophys. Acta 869, 128–40.

    PubMed  Google Scholar 

  • Muhlrad, A. &Morales, M. F. (1984) Isolation and partial renaturation of proteolytic fragments of the myosin head.Proc. Natl. Acad. Sci. USA 81, 1003–7.

    PubMed  Google Scholar 

  • Setton, A., Dan-Goor, M. &Muhlrad, A. (1988) Effect of mild heat treatment on the actin and nucleotide binding of myosin subfragment-1.Biochemistry 27, 792–6.

    Article  PubMed  Google Scholar 

  • Setton, A. &Muhlrad, A. (1984) Effect of mild heat treatment on the ATPase activity and proteolytic sensitivity of myosin subfragment-1.Arch. Biochem. Biophys. 235, 411–17.

    Article  PubMed  Google Scholar 

  • Silberstein, L. &Blau, H. M. (1986) Two fetal-specific fast myosin isozymes in human muscle. InMolecular Biology of Muscle Development, UCLA Symp. on Molecular and Cellular Biology, Vol. 29 (edited byEmerson, C., Fischman, D. A., Nadal-Ginard, B., Siddiqui, M. A. Q.), pp. 253–62. New York: Alan R. Liss Inc.

    Google Scholar 

  • Silberstein, L., Webster, S. G., Travis, M. &Blau, H. M. (1986) Developmental progression of myosin gene expression in cultured muscle cells.Cell 46, 1075–81.

    Article  PubMed  Google Scholar 

  • Spudich, J. A. &Watt, S. (1971) Regulation of rabbit skeletal muscle contraction.J. Biol. Chem. 246, 4866–71.

    PubMed  Google Scholar 

  • Sutoh, K. (1983) Mapping of actin-binding sites on the heavy chain of myosin subfragment I.Biochemistry 22, 1579–85.

    Article  PubMed  Google Scholar 

  • Sutoh, K. (1987) A short hydrophobic segment next to tryptophan-130 in myosin heavy chain close to ribose ring of ADP bound in the ATPase site.Biochemistry 26, 7648–54.

    Article  PubMed  Google Scholar 

  • Sutoh, K., Tokunaga, M. &Wakabayashi, T. (1987) Electron microscopic visualization of the N terminus of the myosin heavy chain using a site-directed antibody.J. Mol. Biol. 195, 953–6.

    Article  PubMed  Google Scholar 

  • Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1984) Electron microscopic visualization of the SH1 thiol of myosin by the use of an avidin-biotin system.J. Mol. Biol. 178, 323–39.

    Article  PubMed  Google Scholar 

  • Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1986) Electron microscopic visualization of the ATPase site of myosin by photoaffinity labelling with a biotinylated photoreactive ADP analog.Proc. Natl. Acad. Sci. USA.83, 212–16.

    PubMed  Google Scholar 

  • Taylor, K. A. &Amos, L. A. (1981) A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments.J. Mol. Biol. 147, 297–324.

    Article  PubMed  Google Scholar 

  • Tokunaga, M., Suzuki, M., Saeki, K. &Wakabayashi, T. (1987) Position of the amino terminus of myosin light chain 1 and light chain 2 determined by electron microscopy with monoclonal antibody.J. Mol. Biol. 194, 245–55.

    Article  PubMed  Google Scholar 

  • Tong, S. W. &Elzinga, M. (1983) The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin.J. Biol. Chem. 258, 13100–10.

    PubMed  Google Scholar 

  • Tonomura, Y., Appel, P. &Morales, M. F. (1966) On the molecular weight of myosin.Biochemistry 5, 515–21.

    Article  PubMed  Google Scholar 

  • Toyoshima, C. &Wakabayashi, T. (1985) Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. IV. Reconstitution from minimal- and high-dose images of the actin-tropomyosin-myosin subfragment-1 complex.J. Biochem. 97, 219–43.

    PubMed  Google Scholar 

  • Warrick, M. H. &Spudich, J. A. (1987) Myosin structure and function in cell motility.Ann. Rev. Cell Biol. 3, 379–421.

    PubMed  Google Scholar 

  • Weeds, A. G. &Taylor, R. S. (1975) Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin.Nature (London) 257, 54–6.

    Article  Google Scholar 

  • Winkelmann, D. A. &Lowey, S. (1986) Probing myosin head structure with monoclonal antibodies.J. Mol. Biol. 188, 595–612.

    Article  PubMed  Google Scholar 

  • Winkelmann, D. A., Lowey, S. &Press, J. L. (1983) Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis.Cell 34, 295–306.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan-Goor, M., Silberstein, L., Kessel, M. et al. Localization of epitopes and functional effects of two novel monoclonal antibodies against skeletal muscle myosin. J Muscle Res Cell Motil 11, 216–226 (1990). https://doi.org/10.1007/BF01843575

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01843575

Keywords

Navigation