Skip to main content
Log in

Further results on the euler and Genocchi numbers

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

We characterize the ordinary generating functions of the Genocchi and median Genocchi numbers as unique solutions of some functional equations and give a direct algebraic proof of several continued fraction expansions for these functions. New relations between these numbers are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. André, D.,Développements de sec x et de tanx. C. R. Acad. Sci. Paris88 (1879), 965–967.

    Google Scholar 

  2. André, D.,Sur les permutations alternées. J. Math. Pures Appl.7 (1881), 167–189.

    Google Scholar 

  3. Barsky, D.,Congruences pour les nombres de Genocchi de deuxième espèce. Séminaire du groupe d'étude d'analyse ultramétrique34 (1980–81), 1–13.

    Google Scholar 

  4. Dumont, D.,Interprétation combinatoire des nombres de Genocchi. Duke Math. J.41 (1974), 305–318.

    Google Scholar 

  5. Dumont, D.,Pics de cycle et dérivées partielles. Actes du Séminaire Lotharingien de Combinatoire 13e session: 22–26 septembre 1985, Termedi Castel San Pietro. [Pub. de l'IRMA, Vol. 316/s-13]. IRMA, Strasbourg, 1986.

    Google Scholar 

  6. Dumont, D. andViennot, G.,A combinatorial interpretation of the Seidel generation of Genocchi numbers. Ann. Discrete Math.6 (1980), 77–87.

    Google Scholar 

  7. Lucas, L.,Théories de nombres. Vol. 1. Gauthiers Villars, Paris, 1891.

    Google Scholar 

  8. Nielsen, N.,Traité élémentaire des nombres de Bernoulli. Gauthiers Villars, Paris, 1923.

    Google Scholar 

  9. Preece, C.,Theorems stated by Ramanujan (X). J. London Math. Soc. (1931), 23–32.

  10. Rogers, L.,On the representation of certain asymptotic series as convergent continued fractions. Proc. London Math. Soc.4 (1906), 72–89.

    Google Scholar 

  11. Seidel, L.,Über eine einfache Enstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen. Münch. Akad. Wiss. Math. Phys. Cl. Sitzungsber.4 (1877), 157–187.

    Google Scholar 

  12. Viennot, G.,Théorie combinatoire des nombres d'Euler et Genocchi. [Séminaire de Théorie des nombres, Exposé No. 11]. Publications de l'Université de Bordeaux I., Bordeaux, 1980–81.

    Google Scholar 

  13. Viennot, G.,Une théorie combinatoire des polynômes orthogonaux généraux. Note de conférence, Université du Quebec à Montréal, Montréal, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumont, D., Zeng, J. Further results on the euler and Genocchi numbers. Aeq. Math. 47, 31–42 (1994). https://doi.org/10.1007/BF01838137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01838137

AMS (1991) subject classification

Navigation