Skip to main content
Log in

Modeling of multibody systems with the object-oriented modeling language Dymola

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The object-oriented modeling language Dymola allows the physical modeling of large interconnected systems based on model components fromdifferent engineering domains. It generatessymbolic code for different target simulators. In this paper, a Dymola class library for the efficient generation of the equations of motion for multibody systems is presented. The library is based on aO(n) algorithm which is reformulated in an objectoriented way. This feature can also be interpreted as a bond graph oriented modeling of multibody systems. Furthermore a new algorithm for a certain class ofvariable structure multibody systems, such as systems with Coulomb friction, is presented, which allows the generation of efficient symbolic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandl, H., Johanni, R., and Otter, M., ‘A very efficient algorithm for the simulation of robots and similar multibody-systems without inversion of the mass-matrix’, inTheory of Robots, selected papers from the IFAC/IFIP/IMACS Symposium, Vienna/Austria, December 1986, P. Kopacek, I. Troch, and K. Desoyer (eds.), Pergamon Press, 1988, pp. 95–100.

  2. Brandl, H., Johanni, R., and Otter, M., ‘An algorithm for the simulation of multibody systems with kinematic loops’, inProceedings of the 7th World Congress on The Theory of Machines and Mechanisms, Pergamon Press, 1987, pp. 407–411.

  3. Brooks, B. A. and Cellier, F. E., ‘Modeling of a distillation column using bond graphs’, inProceedings of the SCS International Conference on Bond Graph Modeling, San Diego, California, January 17–20, 1993, pp. 315–320.

  4. Cellier, F. E.,Continuous System Modeling, Springer-Verlag, New York, 1991.

    Google Scholar 

  5. Cellier, F. E. and Elmqvist, H., ‘Automated formula manipulation supports object-oriented continuous-system modeling’,IEEE Control System Magazine 13(2), 1993, 28–38.

    Article  Google Scholar 

  6. Elmqvist, H., ‘A structured model language for large continuous systems’, Ph.D. Dissertation, Report CODEN:LUTFD2/(TFRT-1015), Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1978.

    Google Scholar 

  7. Elmqvist, H., Åström, K. J., Schönthal, T., and Wittenmark, B.,Simnon — User's Guide for MS-DOS Computers, SSPA Systems, Gothenburg, Sweden, 1990.

    Google Scholar 

  8. Elmqvist, H.,Dymola — User's Manual, Dynasim AB, Research Park Ideon, Lund, Sweden, 1994.

    Google Scholar 

  9. Elmqvist, H., Cellier, F. E., and Otter, M., ‘Object-oriented modeling of hybrid systems’, inProceedings ESS'93, European Simulation Symposium, Delft, The Netherlands, October 1993, pp. xxxi-xli.

  10. Elmqvist, H. and Otter, M., ‘Methods for tearing systems of equations in object-oriented modeling’, inProceedings ESM'94, European Simulation Multiconference, Barcelona, Spain, June 1994.

  11. Franke, J. and Otter, M., ‘The Manutec r3 benchmark models for the dynamic simulation of robots’, Technical Report TR R101-93, Institute for Robotics and System Dynamics, DLR Oberpfaffenhofen, March 1993.

    Google Scholar 

  12. Glocker, C. and Pfeiffer, F., ‘Complementary problems in multibody systems with planar friction’, accepted for publication inApplied Mechanics (to appear).

  13. Haug, E. J., Wu, S. C., and Yang, S. M., ‘Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion — Part I, Theory’,Mechanism and Machine Theory 21, 1986, 401–506.

    Article  Google Scholar 

  14. Hild, D. R. and Cellier, F. E., ‘Object-oriented electronic circuit modeling using Dymola’, inProceedings OOS'94, SCS Object Oriented Simulation Conference, Tempe, Arizona, January 1994, pp. 68–75.

  15. Hiller, M., Kecskeméthy, A., and Stelzle, W., ‘Ein Vergleich rekursiver Verfahren’, Internal Report, Universität Duisburg, Fachgebiet Mechatronik & Mechanik. A short version of this paper appeared in: Stelzle, W., ‘Ein Vergleich rekursiver Verfahren zur Untersuchung der Dynamik baumstrukturierter Mehrkörpersystem’,ZAMM 73, 1993, 107–109.

    Google Scholar 

  16. Karnopp, D. C., Margolis, D. L., and Rosenberg, R. C.,System Dynamics: A Unified Approach, 2nd ed., John Wiley, New York, 1990.

    Google Scholar 

  17. Korn, G. A.,Interactive Dynamic-System Simulation, McGraw-Hill, 1989.

  18. Lötstedt, P., ‘Coulomb friction in two-dimensional rigid body systems’,ZAMM 61, 1981, 605–615.

    Google Scholar 

  19. Luh, J. Y. S., Walker, M. W., and Paul, R. P. C., ‘On-line computational scheme for mechanical manipulators’,Transactions of the ASME — Journal of Dynamic Systems Measurement and Control 102, 1980, 69–76.

    Google Scholar 

  20. Matchworks, Inc.,SIMULINK — User's Manual, South Natick, Mass., 1992.

  21. Matsson, S. E. and Söderlind, G., ‘A new technique for solving high-index differential-algebraic equations using dummy derivatives’, inProceedings of the IEEE Symposium on Computer-Aided Control System Design, CACSD'92, Napa, California, March 1992.

  22. Mitchell, E. E. L. and Gauthier, J. S.,ACSL: Advanced Continuous Simulation Language — Reference Manual, Edition 10.0, MGS, Concord., Mass., 1991.

    Google Scholar 

  23. Nagel, L. W., ‘Spice2: A computer program to simulate semiconductor circuits’, Berkeley, University of California, Electronic Research Laboratory, ERL-M520, 1975.

    Google Scholar 

  24. Otter, M., ‘DSblock: A neutral description of dynamic systems. Version 3.2’, Technical Report TR R81-92, Institute for Robotics and System Dynamics, DLR Oberpfaffenhofen, May 1992.

    Google Scholar 

  25. Otter, M., Hocke, M., Daberkow, A., and Leister, G., ‘An object-oriented data model for multibody systems’, inAdvanced Multibody System Dynamics, W. Schiehlen (ed.), Kluwer, 1993, pp. 19–58.

  26. Otter, M., Objektorientierte Modellierung mechatronischer Systeme am Beispiel geregelter Robotor’, Dr.-Ing. Dissertation, Fortschrittberichte VDI, Reihe 20, No. 147, VDI-Verlag, 1995.

  27. Pantelides, C. C., ‘The consistent initialization of differential-algebraic systems’,SIAM Journal of Scientific and Statistical Computing 9, 1988, 213–231.

    Article  Google Scholar 

  28. Pfeiffer, F., ‘Über unstetige, insbesondere stoßerregte Schwingungen’,Zeitschrift für Flugwissenschaft und Weltraumforschung 12, 1988, 358–367.

    Google Scholar 

  29. Roberson, R. E. and Schwertassek, R.,Dynamics of Multibody Systems, Springer-Verlag, 1988.

  30. Tarjan, R. E., ‘Depth first search and linear graph algorithms’,SIAM Journal of Scientific and Statistical Computing 1, 1972, 146–160.

    Google Scholar 

  31. Walker, M. and Orin, D., ‘Efficient dynamic computer simulation of robotic mechanisms’,ASME, Journal of Dynamic Systems, Measurement and Control 104, 1982, 205–211.

    Google Scholar 

  32. Wehage, R. A., ‘Application of matrix partitioning and recursive projection to order n solution of constrained equations of motion’, inProceedings of the 20th Biennial ASME Mechanisms Conference, Orlando, Florida, 1988.

  33. Weiner, M. and Cellier, F. E., ‘Modeling and simulation of a solar energy system by use of bond graphs’, inProceedings SCS International Conference on Bond Graph Modeling, San Diego, California, January 17–20, 1993, pp. 301–306.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otter, M., Elmqvist, H. & Cellier, F.E. Modeling of multibody systems with the object-oriented modeling language Dymola. Nonlinear Dyn 9, 91–112 (1996). https://doi.org/10.1007/BF01833295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01833295

Key words

Navigation