Skip to main content
Log in

Chemical composition and fractionation of the continental crust

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Die chemische Zusammensetzung der gesamten kontinentalen Kruste, die zu 57% aus der Unterkruste (60% felsische und 40% mafische Granulite) und zu 43% aus Oberkruste besteht, wurde neu ermittelt. Die Proportionen der Krusteneinheiten beruhen auf petrologischen Beobachtungen (Bohlen &Mezger, 1989). Die geschätzte Zusammensetzung der Gesamtkruste liegt zwischen Andesit und Tonalit. Sie ist höher in den Gehalten an Si, K, Rb, Sr, Zr, Nb, Ba, LREE, Pb, Th und niedriger im Mg, Ca, Sc, Mn, Fe als die vonTaylor &McLennan (1985) mitgeteilten mittleren Krustenwerte. Die chemischen Unterschiede zwischen Ober- und Unterkruste werden ausgeglichen, wenn man die Substanz von 12,5% S-Typ-Granit von der Oberkruste abzieht und zur Unterkruste hinzufügt. Als typisches Beispiel der Abtrennung granitischer Partialschmelzen im wasseruntersättigten System wird das der variskischen Metamorphose von Metasedimenten in der Ivreazone (Nord-Italien) angesehen.Schnetger (1988) konnte hier mit einer chemischen Bilanz zeigen, daß die Umwandlung von amphibolitfaziellen zu granulitfaziellen Gesteinen mit dem Verlust von etwa 35% granitischer Schmelze verbunden war. Die negative Eu-Anomalie der Oberkruste ist weltweit doppelt so groß wie die positive Anomalie der Unterkruste. Diese in der Zeit vom Archaikum bis heute vergrößerte Diskrepanz läßt sich nur mit dem Verlust von Ca-reichen Restiten aus der Kruste an den Mantel erklären. Die chemische Zusammensetzung der kontinentalen Kruste hat sich sonst seit dem Archaikum nicht systematisch geändert, wie am Beispiel Grönlands gezeigt wird.

Abstract

A new estimate of the bulk continental crust is reported consisting of 57 percent lower crust (60% felsic and 40% mafic granulites) and 43 percent upper crust. The proportions of crustal units are based on petrological observations (Bohlen &Mezger, 1989). The estimate of a bulk composition is intermediate between andesite and tonalite and is higher in Si, K, Rb, Sr, Zr, Nb, Ba, LREE, Pb, Th concentrations and lower in Mg, Ca, Sc, Mn, Fe than the crustal abundances reported byTaylor &McLennan (1985). Equal chemical composition between the upper crust and the felsic part of the lower crust is attained in balance computations if one restores a fraction of 12.5 percent S-type granite from the upper into the lower crust. An example of water-undersaturated partial melting and separation of a fraction of about 35 percent granitic magma at the conversion from amphibolite-into granulite-facies metasediments has been balanced bySchnetger (1988) in the Ivrea area (N. Italy). The worldwide observed discrepancy between a larger negative Eu anomaly in the upper crust compared with the half as large positive anomaly of the lower crust increasing from the early Precambrian to present has been explained by recycling of Ca-rich restite into the upper mantle. The composition of the Archean crust (example: Greenland) does not differ systematically from the post-Archean crust.

Résumé

Cette note propose une nouvelle estimation de la composition chimique d'ensemble de la croûte continentale, constituée pour 57% de croûte inférieure (60% de granulites felsiques et 40% de granulites mafiques) et pour 43% de croûte supérieure. Les proportions de ces unités crustales sont basées sur les observations pétrologiques (Bohlen etMezger 1989). La composition d'ensemble proposée est intermédiaire entre celles d'une andésite et d'une tonalite; par rapport aux abondances crustales données parTaylor etMcLennan (1985), les teneurs sont plus élevées en Si, K, Rb, Sr, Zr, Nb, Ba, LEE, Pb, Th et moins élevées en Mg, Ca, Sc, Mn, Fe. Si on tranfère de la croûte supérieure à la croûte inférieure la matière correspondant à 12,5% de granite de type S, la différence de composition entre ces deux croûtes disparaît. Un exemple typique de fusion partielle granitique en système sous-saturé en eau est fourni par le métamorphisme varisque de métasédiments dans la zone d'Ivrée (Italie du Nord). D'après ce bilan chimique établi parSchnetger (1988), le passage des roches du faciès des amphibolites à celui des granulites s'accompagne de la production d'environ 35% de magma granitique. L'anomalie négative en Eu de la croûte supérieure est partout le double de l'anomalie positive de la coûte inférieure. Cette différence, qui s'est accrue depuis l'Archéen jusqu'aujourd'hui, s'explique par le passage de restites riches en Ca dans le manteau supérieur. La composition d'ensemble de la croûte continentale ne s'est toutefois pas modifiée depuis l'Archéen, comme le montre l'exemple du Groenland.

Краткое содержание

Заново определили хи мический состав обще й континентальной Зем ной коры, нижняя часть которой составляет 57% е е (60% фельзических и 40% мафических пород), а в ерхняя часть -43%. Соотношения эти, как и приведенное подразд еление основаны на петролог ических исследовани ях (Bohlen & Mezger, 1989). Оценка состава общей материковой ко ры разрешает помести ть ее между андезитами и тоналитами. При сравнении полученны х новых данных с таков ыми Taylor & McLennan (1985) о средней материк овой коре отмечают в ней по вышенный состав Si, K, Rb, Sr, Zr, Nb, Ba, LREE, Pb, Th и пониженные содержан ия Mg, Ca, Sc, Mn, Fe. Химические различия между нижней и верхне й частью материковой к оры сглаживаются, есл и 12,5% гранитов типа S, обычн о причисляемых к верхней части ее, при писать к нижней части. Герцинский метаморф изм метаседиментов зоны Иврей — северная Италия, считают типич ным примером отделения г ранитных локальных расплавов в системе, н едосыщенной водой. Исходя из химическог о состава Schnetger (1988) доказал, что преобраз ование пород амфибол итовой фации в фацию гранули тов связано с потерей гранитных ра сплавов на 35%. В верхней части материковой ко ры на всем Земном шаре отмечается отри цательная аномалия Европия, которая в два раза выше положитель ной ее аномалии в нижней ч асти коры. Такое расхождение, все увел ичивающееся, начиная с архея и продолжающее ся до наших дней, можно объяснить толь ко переходом рестито в, богатых кальцием, из к оры в мантию. На примере Гренландии п оказано, что химическ ий состав материковой к оры с архея не претерп евал значительных измене ний.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allègre, C. J. (1982): Chemical geodynacmics. - Tectono-physics,81, 109–132.

    Google Scholar 

  • Ben Othman, D., White, W. M. &Patchett, J. (1989): The geochemistry of marine sediments, island arc magma genesis and crust mantle recycling. - Earth Planet. Sci. L.,94, 1–21.

    Google Scholar 

  • Bohlen, S. R. (1987): Pressure-temperature-time paths and a tectonic model for the evolution of granulites. - J. Geol.,95, 617–632.

    Google Scholar 

  • — &Mezger, K. (1989): Origin of granulite terranes and the formation of the lowermost continental crust. - Science,244, 326–329.

    Google Scholar 

  • Chapman, D. S. (1986): Thermal gradients in the continental crust. - In: Dawson, J. B., Carswell, D. A., Hall, J. & Wedepohl, K. H. (eds.) The Nature of the Lower Continental Crust. Blackwell Scientific Publ., Oxford.

    Google Scholar 

  • Cogley, J. G. (1984): Continental margins and the extent and number of continents. - Rev. Geophysics Space Physics,22, 101.

    Google Scholar 

  • Compston, W. &Chappell, B. W. (1979): Sr isotope evolution of granitoid source rocks. - In: Mc Elhinny, M. W. (Ed.) The Earth: Its Origin, Structure and Evolution. Academ. Press. London, New York, San Francisco.

    Google Scholar 

  • Cumming, G. L., Köppel, V. &Ferrario, A. (1987): A lead isotope study of the northeastern Ivrea Zone and the adjoining Cenery Zone (N. Italy): Evidence for a contaminated subcontinental mantle. - Contrib. Mineral. Petrol.,97, 19–30.

    Google Scholar 

  • Day, W. C. &Weiblen, P. W. (1986): Origin of Late Archean granite: geochemical evidence from the Vermillion Granitic Complex of northern Minnesota. - Contrib. Mineral. Petrol.,93, 283–296.

    Google Scholar 

  • Den Tex, E. (1965): Metamorphic lineages of orogenic plutonism. - Geologie en Mijnbouw,44, 105–132.

    Google Scholar 

  • Downes, H. &Duthou, J. L. (1988): Isotopic and trace element arguments for the lower-crustal origin of Hercynian granitoids and Pre-Hercynian orthogneisses, Massif Central (France). - Chem. Geol.,68, 291–308.

    Google Scholar 

  • Drummond, B. J. (1988): A review of crust/upper mantle structure in the Precambrian areas of Australia and implications for Precambrian crustal evolution. - Precambr. Res.,40/41, 101–116.

    Google Scholar 

  • Eade, K. E. &Fahring, W. F. (1971): Geochemical evolutionary trends of continental plates — a preliminary study of the Canadian Shield. - Geol. Surv. Canada Bull.,179, 1–51.

    Google Scholar 

  • Goldschmidt, V. M. (1933): Grundlagen der quantitativen Geochemie. - Fortschr. Miner. Krist. Petr.,17, 112–156.

    Google Scholar 

  • Griffin, W. L. &O'Reilly, S. Y. (1987): The composition of the lower crust and the nature of the continental Mohoxenolith evidence. - In: Nixon, P. H. (Ed.) Mantle Xenoliths. J. Wiley & Sons, New York.

    Google Scholar 

  • Helz, R. T. (1973, 1976): Phase relations of basalts in their melting range at PH2O = 5 kb as a function of oxygen fugacity. Part I: Mafic phases. Part II: Melt compositions. - J. Petrol.,14, 249–302 and17, 139–193.

    Google Scholar 

  • Hofmann, A. W. (1988): Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. - Chem. Geol.,90, 297–314.

    Google Scholar 

  • Huppert, H. E. &Sparks, R. S. J. (1988): The generation of granitic magmas by intrusion of basalt into continental crust. - J. Petrol.,29, 599–624.

    Google Scholar 

  • Jackson, N. J., Walsh, J. N. &Pegram, E. (1984): Geology, geochemistry and petrogenesis of late Precambrian granitoids in the Central Higaz region of the Arabian Shield. - Contrib. Mineral. Petrol.,87, 205–219.

    Google Scholar 

  • Johannes, W. &Holtz, F. (1990): Formation and composition of H2O-undersaturated granitic melts. - In: Ashworth, J. R. & Brown, M. (Eds) High Temperature Metamorphism and Crustal Anatexis. Unwin & Hyman, London.

    Google Scholar 

  • Johnson, C. M., Czamanske, G. K., Lipman, P. W. (1989): Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of plutonic and volcanic rocks. - Contrib. Mineral. Petrol.,103, 90–109.

    Google Scholar 

  • Johnston, A. D. &Wyllie, P. J. (1988): Constraints on the origin of Archean trondhjemites based on phase relationships of Nûk gneiss with H2O at 15 kbar. - Contrib. Mineral Petrol.,100, 35–46.

    Google Scholar 

  • Kalsbeek, F. (1976): Metamorphism of Archean rocks of West Greenland. - In: Windley, B. F. (Ed). The Early History of the Earth. John Wiley & Sons, London, 619 pp.

    Google Scholar 

  • Kushiro, I. (1982): Density of tholeiite and alkali basalt magmas at high pressures. - Ann. Rep. Director Geophys. Lab. Washington, Yearbook,81, 305–309.

    Google Scholar 

  • Le Maitre, R. W. (1976): The chemical variability of some common igneous rocks. - J. Petrol.,17, 589–637.

    Google Scholar 

  • Mazzucchelli, M. &Siena, F. (1986): Geotectonic significance of the metabasites of the kinzigitic series, Ivrea-Verbano-Zone (Western Italian Alps). - Tschermaks Mineral. Petrogr. Mitt.,35, 99–166.

    Google Scholar 

  • Mehnert, K. R. (1969): Composition and abundance of common metamorphic rock types. - In: Handbook of Geochemistry1, 9, 272–296, Springer, Berlin, Heidelberg, New York, 442 pp.

    Google Scholar 

  • Nabelek, P. I., Hanson, G. N., Labotka, T. C. &Papike, J. J. (1988): Effects of fluids on the interaction of granites with limestones: The Notch Peak Stock, Utah. - Contrib. Mineral. Petrol.,99, 49–61.

    Google Scholar 

  • Neiva, A. M. R., Neiva, J. M. C. &Parry, S. (1987): Geochemistry of the granitic rocks and their minerals from Serra da Estrela, Central Portugal. - Geochim. Cosmochim. A.,51, 439–454.

    Google Scholar 

  • Pickett, D. A. &Wasserburg, G. J. (1989): Neodymium and strontium isotopic characteristics of New Zealand granitoids and related rocks. - Contrib. Mineral. Petrol.,103, 131–142.

    Google Scholar 

  • Pin, C,Sills, J. D. (1986): Petrogenesis of layered gabbros and ultramafic rocks from Val Sesia, the Ivrea Zone, NW Italy: trace element ad isotope geochemistry. - In: Dawson, J. B., Carswell, D. A., Hall, J., Wedepohl, K. H. (eds.) The Nature of the Lower Continental Crust. Geol Soc. Spec. Publ.,24, 231–249.

  • Pollack, H. N. &Chapman, D. S. (1977): On the regional variation of heat flow, geotherms and lithospheric thickness. - Tectonophysics,38, 279–296.

    Google Scholar 

  • Price, R. C. &Taylor, S. R. (1977): The rare earth element geochemistry of granite, gneiss and migmatite from the western metamorphic belt of South-Eastern Australia. - Contrib. Mineral. Petrol.,62, 249–263.

    Google Scholar 

  • Ronov, A. B. &Yaroshevskiy, A. A. (1968): Chemical structure of the Earth's crust. - Geochem. Internat.,5, 1041–1066.

    Google Scholar 

  • Rudnick, R. L. &Presper, F. (1990): Geochemistry of intermediate-to high-pressure granulites. - In: Vielzeuf, D. Vidal P. (eds) Granulites and Crustal Differentiation. Kluwer Academic Publ. Amsterdam. NATO ASI Series.

    Google Scholar 

  • Schnetger, B. (1988): Geochemische Untersuchungen an den Kinzigiten und Stronaliten der Ivrea-Zone (Norditalien). - Dr. rer. nat. Disseration, Göttingen, 116 pp.

  • Sederholm, J. J. (1925): The average composition of the Earth's crust in Finland. - Bull. Comm. Géol. Finlande,70, 3–20.

    Google Scholar 

  • Shaw, D. M., Reilly, G. A., Muysson, J. R., Pattenden, G. E. &Campbell, F. P. (1967): An estimate of the chemical composition of the Canadian Precambrian Shield. - Canadian J. Earth Sci.,4, 829–853.

    Google Scholar 

  • —,Dostal, J. &Keays, R. R. (1976): Additional estimates of continental surface Precambrian shield composition in Canada. - Geochim. Cosmochim. A.,40, 73–83.

    Google Scholar 

  • —,Cramer, J. J., Higgins, M. D. &Truscott, M. G. (1986): Composition of the Canadian Precambrian shield and the continental crust of the earth. - In: Dawson, J. B., Carswell, D. A., Hall, J. & Wedepohl, K. H. (Eds) The Nature of the Lower Continental Crust. Blackwell Sci. Publ. Oxford.

    Google Scholar 

  • Shaw, S. E. &Flood, R. H. (1981): The New England Batholith, eastern Australia: geochemical variations in time and space. - J. Geophys. Res.,86, 10530–10544.

    Google Scholar 

  • Sighinolfi, G. P. &Gorgoni, C. (1978): Chemical evolution of high-grade metamorphic rocks — anatexis and remotion of material from granulite terrains. Chem. Geol,22, 157–176.

    Google Scholar 

  • Sills, J. (1984): Granulite facies metamorphism in the Ivrea Zone, NW Italy. - Schweiz. Min. Petr. Mitt.,64, 169–185.

    Google Scholar 

  • — &Tarney, J. (1984): Petrogenesis and tectonic significance of amphibolites interlayered with metasedimentary gneisses in the Ivrea Zone, Southern Alps, NW Italy. - Tectonophysics,107, 187–206.

    Google Scholar 

  • Soller, D. R., Ray, R. D. &Brown, R. D. (1982): A new global crustal thicknesss map. Tectonics,1, 125–149.

    Google Scholar 

  • Strackenbrock-Gehrke, I. (1989): Thermometrie und Graphitgenese in Metakarbonaten der Ivrea-Zone (Norditalien). - Dr. rer. nat. Thesis, Gö ttingen.

  • Sultan, M., Batiza, R., Sturchio, N. C. (1986): The origin of small-scale geochemical and mineralogic variations in a granite intrusion. A crystallization and mixing model. - Contrib. Mineral. Petrol.,93, 513–523.

    Google Scholar 

  • Taylor, S. R. (1964): Abundance of chemical elements in the continental crust: a new table. - Geochim, Cosmochim., A.28, 1273–1285.

    Google Scholar 

  • — (1967): The origin and growth of continents. - Tectonophysic,4, 17–34.

    Google Scholar 

  • — (1977): Island arc models and the composition of the continental crust. - AGU Ewing Series,1, 323–335.

    Google Scholar 

  • —,McLennan, S. M. &McCulloch, M. T. (1983): Geochemistry of loess, continental crustal composition and crustal model ages. - Geochim. Cosmochim., A.47, 1897–1905.

    Google Scholar 

  • — &McLennan, S. M. (1985): The Continental Crust: its Composition and Evolution.- Blackwell, Oxford, 312 pp.

    Google Scholar 

  • Teufel, S. &Schärer, U. (1989): Unravelling the age of high-grade metamorphism of the Ivrea-Zone: a monazite single-grain and small fraction study. - Terra Abstracts1, 350.

    Google Scholar 

  • Thompson, A. B. (1982): Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids.-Am. J. Sci.,282, 1567–1595.

    Google Scholar 

  • Tischendorf, G., Geisler, M., Gerstenberger, H., Budzinski H. &Vogler, P. (1987): Geochemistry of Variscan granites of the Westerzgebirge-Vogtland region — an example of tin deposit-generating granites.- Chem. d. Erde,46, 213–235.

    Google Scholar 

  • Vielzeuf, D. &Holloway, J. R. (1988): Experimental determination of the fluid-absent melting relations in the pelitic system. - Contrib. Mineral. Petrol.,98, 257–276.

    Google Scholar 

  • Vogt, E. T. &Flower, M. F. J. (1989): Genesis of the Kinabalu (Sabah) granitoid at a subduction-collision junction. - Contrib. Mineral. Petrol.,103, 493–509.

    Google Scholar 

  • Voshage, H., Hunziker, J. C., Hofmann, A. W., Zingg, A. (1987): A Nd and Sr isotopic study of the Ivrea Zone, Southern Alps, N-Italy. - Contrib. Mineral. Petrol.,97, 31–42.

    Google Scholar 

  • —,Hofmann, A. W., Mazzucchelli, M., Rivalenti, G., Sinigoi, S. &Raczek, I. (1990): Crust assimilation by mantle melts in the Ivrea Zone. Nature347, 731–736.

    Google Scholar 

  • Wänke, H., Dreibus, G. &Jagoutz, E. (1984): Mantle chemistry and accretion history of the Earth. - In: Kröner, A., Hanson, G. N. & Goodwin, A. M. (eds.) Archean Geochemistry. Springer, Berlin, Heidelberg, New York, Tokyo, 286 pp.

    Google Scholar 

  • Wedepohl, K. H. (1969): Composition and abundance of common igneous rocks. - Handbook of Geochemistry,1, 227–249, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • — (1981a): Der primäre Erdmantel (Mp) und die durch Krustenbildung verarmte Mantelzusammensetzung (Md). - Fortschr. Miner.,59, Beih. 1, 203–205.

    Google Scholar 

  • — (1981b): Tholeiitic basalts form spreading ocean ridges; the growth of the ocean crust.- Naturwissenschaften,68, 110–119.

    Google Scholar 

  • —,Heinrichs, H. &Bridgwater, D. (1991): Chemical characteristics of typical quartzfeldspatic rocks in the Archean crust of SW und SE Greenland. - Contrib. Mineral. Petrol.107, 163–179.

    Google Scholar 

  • Whalen, J. B., Currie, K. L. &Chappell, B. W. (1987): A-type granites: geochemical characteristics, discrimination and petrogenesis. - Contrib. Mineral. Petrol.,95, 407–419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedepohl, K.H. Chemical composition and fractionation of the continental crust. Geol Rundsch 80, 207–223 (1991). https://doi.org/10.1007/BF01829361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01829361

Keywords

Navigation