Skip to main content
Log in

The autonomic nervous system and the regulation of arterial tone in migraine

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Abnormal regulation of the large cranial arteries seems to play a significant role in the mechanisms of migraine pain. Thus, vasodilatation of extra- and intracranial conductance arteries has been described both during spontaneous migraine attacks and during experimentally provoked vascular headaches. The regulation of the diameter of these arteries is complex and involves autonomic, trigeminovascular, endothelial and humoral mechanisms. Studies concerned with the function of the autonomic nervous system in migraine suggest that a mild parasympathetic dysfunction may be present. Cerebral arteries in migraineurs are hypersensitive to nitric oxide, which may induce migraine attacks. As the enzyme responsible for nitric oxide synthesis is present in parasympathetic nerve endings around cerebral arteries, this supports a role for the parasympathetic nervous system in migraine. In addition, vasoactive transmitters released from perivascular trigeminal nerve endings may be implicated. Several of these aspects are closely linked to the presumed mechanisms of action of modern migraine therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmussen BK, Jensen R, Schroll M, Olesen J. Epidemiology of headache in a general population — a prevalence study.J Clin Epidemiol 1991;44: 1147–1157.

    PubMed  Google Scholar 

  2. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain.Cephalalgia 1988;8 (suppl. 7).

    Google Scholar 

  3. Olesen J. Migraine with aura and its subforms. In: Olesen J, Tfelt-Hansen P, Welch KMA, eds.The Headaches. New York: Raven Press, 1993: 263–276.

    Google Scholar 

  4. Olesen J. Cerebral and extracranial circulatory disturbances in migraine: pathophysiological implications.Cerebrovasc Brain Metab Rev 1991;3: 1–28.

    PubMed  Google Scholar 

  5. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory.Brain 1994;117: 199–210.

    PubMed  Google Scholar 

  6. Iversen HK, Holm S, Friberg L. Intracranial hemodynamics during intravenous nitroglycerin infusion.Cephalalgia 1989;9 (suppl. 10): 84–85.

    Google Scholar 

  7. Iversen HK, Nielsen TH, Olesen J, Tfelt-Hansen P. Arterial responses during migraine headache.Lancet 1990;336: 837–839.

    PubMed  Google Scholar 

  8. Friberg L, Olesen J, Iversen HK, Sperling B. Migraine pain associated with middle cerebral artery dilatation: reversal by sumatriptan.Lancet 1991;338: 13–17.

    PubMed  Google Scholar 

  9. Iversen HK.N-Acetylcysteine enhances nitroglycerin-induced headache and arterial responses.Clin Pharmacol Ther 1992;52: 125–133.

    PubMed  Google Scholar 

  10. Thomsen LL, Iversen HK, Brinck TA, Olesen J. Arterial supersensitivity to nitric oxide (nitroglycerin) in migraine sufferers.Cephalalgia 1993;13: 395–399.

    PubMed  Google Scholar 

  11. Thomsen LL, Iversen HK, Olesen J. Cerebral blood flow velocities are reduced during attacks of unilateral migraine without aura.Cephalalgia 1995;15: 109–116.

    PubMed  Google Scholar 

  12. Edvinsson L, Goadsby PJ. Neuropeptides in migraine and cluster headache.Cephalalgia 1994;14: 320–328.

    PubMed  Google Scholar 

  13. Edvinsson L. Functional role of perivascular peptides in the control of cerebral regulation.Trends Neurosci 1985;8: 126–131.

    Google Scholar 

  14. Brayden JE and Bevan JA. The autonomic innervation of the cephalic circulation. In: Olesen J and Edvinsson L, eds.Basic Mechanisms of Headache. Amsterdam: Elsevier Science, 1988: 145–155

    Google Scholar 

  15. Nozaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DSet al. Possible origins and distribution of immunoactive nitric oxide synthethase-containing nerve fibers in cerebral arteries.J Cereb Blood Flow Metab 1993;13: 70–79.

    PubMed  Google Scholar 

  16. Starke K. Regulation of noradrenalin release by presynaptic receptor systems.Rev Physiol Biochem Pharmacol 1987;107: 73–146.

    PubMed  Google Scholar 

  17. Vizi ES. Presynaptic modulation of neurochemical transmission.Prog Neurobiol 1979;12: 181–290.

    PubMed  Google Scholar 

  18. Moskowitz MA. Neurogenic inflammation in the pathophysiology and treatment of migraine.Neurology 1993;43 (suppl. 3): S16-S20.

    PubMed  Google Scholar 

  19. Bannister R and Mathias C. Testing autonomic reflexes, In: R. Bannister, eds.Autonomic Failure. Oxford: Oxford University Press, 1988: 289–307.

    Google Scholar 

  20. Havanka-Kanniainen H, Tolonen U, Myllyla VV. Autonomic dysfunction in adult migraineurs.Headache 1986;26: 425–430.

    PubMed  Google Scholar 

  21. Havanka-Kanniainen H. Cardiovascular reflex responses during migraine attack.Headache 1986;26: 442–446.

    PubMed  Google Scholar 

  22. Havanka-Kanniainen H, Tolonen U, Myllyla VV. Cardiovascular reflexes in young migraine patients.Headache 1986;26: 420–424.

    PubMed  Google Scholar 

  23. Gotoh F, Komatsumota S, Araki N, Gomi S. Noradrenergic nervous activity in migraine.Arch Neurol 1984;41: 951–955.

    PubMed  Google Scholar 

  24. Thomsen LL, Iversen HK, Boesen F, Olesen J. Transcranial Doppler and cardiovascular responses during cardiovascular autonomic tests in migraineurs during and outside of attacks.Brain 1995;118: in press.

  25. Drummond PD. Vascular responses in headache-prone subjects during stress.Biol Psychol 1985;21: 11–25.

    PubMed  Google Scholar 

  26. Cortelli P, De Carolis P, Staurani A,et al. Cardiovascular and biochemical assessment in migraine patients submitted to tilt test.Funct Neurol 1986;1: 285–290.

    PubMed  Google Scholar 

  27. Cortelli P, Lugaresi A, Contin E, Agati R, Tinuper P, Saguegne T. Cardiovascular reflex in migraine patients during and out of migraine attack.Cephalalgia 1987;7 (suppl. 6): 289–290

    Google Scholar 

  28. Mikamo K, Takeshima T, Takahashi K. Cardiovascular sympathetic hypofunction in muscle contraction headache and migraine.Headache 1989;29: 86–89.

    PubMed  Google Scholar 

  29. Boccuni M, Alessandi M, Fusco BM, Cangi F. The pressor hyperresponsiveness to phenylephrine unmask sympathetic hypofunction in migraine.Cephalalgia 1989;9: 239–245.

    PubMed  Google Scholar 

  30. Cortelli P, Pierangeli G, Parchi P, Contin M, Baruzzi A, Lugaresi E. Autonomic nervous system function in migraine without aura.Headache 1991;31: 457–462.

    PubMed  Google Scholar 

  31. Pogacnik T, Sega S, Pecnik B, Kiauta T. Autonomic function testing in patients with migraine.Headache 1993;33: 545–550.

    PubMed  Google Scholar 

  32. Appenzeller O. Reflex vasomotor functions: clinical and experimental studies in migraine.Res Clin Stud Headache 1978;6: 160–166.

    PubMed  Google Scholar 

  33. Passchier J, Van Der Helm-Hylkema H, Orlebeke JF. Psychophysiological characteristics of migraine and tension headache patients. Differential effects of sex and pain state.Headache 1984;24: 131–139.

    PubMed  Google Scholar 

  34. Downey JA, Frewin DB. Vascular responses in the hands of patients suffering from migraine.J Neurol Neurosurg Psychiatr 1967;35: 258–263.

    Google Scholar 

  35. Hockaday JM, Macmillan AL, Whitty CW. Vasomotor-reflex responses in idiopathic and hormone dependent migraine.Lancet 1967;i: 1023–1026.

    Google Scholar 

  36. French EB, Lassers BW, Desai MG. Reflex vasomotor responses in the hands of migraineous subjects.J Neurol Neurosurg Psychiatr 1967;30: 276–278.

    PubMed  Google Scholar 

  37. Jensen K. Subcutaneous blood flow in the temporal region of migraine patients.Acta Neurol Scand 1987;75: 310–318.

    PubMed  Google Scholar 

  38. Lauritzen M, Olsen TS, Lassen NA, Paulson OB. Regulation of regional cerebral blood flow during and between migraine attacks.Ann Neurol 1983;14: 569–572.

    PubMed  Google Scholar 

  39. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine.Ann Neurol 1981;9: 344–352.

    PubMed  Google Scholar 

  40. Sakai F, Meyer JS. Abnormal cerebrovascular reactivity in patients with migraine and cluster headache.Headache 1979;19: 257–266.

    PubMed  Google Scholar 

  41. Simard D, Paulson OB. Cerebral vasomotor paralysis during migraine attack.Arch Neurol 1973;29: 207–209

    PubMed  Google Scholar 

  42. Olsen TS, Lassen NA. Blood flow and vascular reactivity during attacks of classical migraine — limitations of the Xe-133 intraarterial technique.Headache 1988;29: 15–20.

    Google Scholar 

  43. Zwetsloot CP, Caekebeke JVF, Odink J, Ferrari MD. Vascular reactivity during migraine attacks: a transcranial Doppler study.Headache 1991;31: 593–595

    PubMed  Google Scholar 

  44. Thomsen LL, Iversen HK, Olesen J. Increased cerebrovascular pCO2 reactivity in migraine with aura — a transcranial Doppler study during hyperventilation.Cephalalgia 1995;15: 211–215.

    PubMed  Google Scholar 

  45. Thomas TD, Harpold GJ, Troost BT. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler.Cephalalgia 1990;10: 95–99.

    PubMed  Google Scholar 

  46. Harer C, von Kummer R. Cerebrovascular CO2 reactivity in migraine: assessment by transcranial Doppler ultrasound.J Neurol 1991;238: 23–26.

    PubMed  Google Scholar 

  47. Gomi S, Gotoh F, Komatsumoto S, Ishikawa Y, Araki N, Hamada J. Sweating function and retinal vasomotor reactivity in migraine.Cephalalgia 1989;9: 179–185.

    PubMed  Google Scholar 

  48. Reinecke M, Wallasch TM, Langohr HD. Abnormal autonomic cerebrovascular reactivity in migraine: clinical experience with a new transcranial Doppler ultrasound method.Neurology 1989;39 (suppl. 1): 324.

    PubMed  Google Scholar 

  49. Fanciullaci M. Iris adrenergic impairment of idiopathic headache.Headache 1979;19: 8–13.

    PubMed  Google Scholar 

  50. Balottin V, Arisi D, Frigo GM, Lanzi G. Iris adrenergic sensitivity and migraine in pediatric patients.Headache 1983;23: 32–33.

    PubMed  Google Scholar 

  51. Herman P. The pupil and headaches.Headache 1983;23: 102–105.

    PubMed  Google Scholar 

  52. Rubin LS, Graham D, Pasker R, Calhaun W. Autonomic nervous system dysfunction in common migraine.Headache 1985;25: 40–48.

    PubMed  Google Scholar 

  53. Micielli G, Tassorelli C, Magri M, Sandrini G, Cavallini A, Nappi G. Vegetative imbalance in migraine. a dynamic TV pupillometric evaluation.Funct Neurol 1989;4: 105–111.

    PubMed  Google Scholar 

  54. Drummond PD. Disturbances in ocular sympathetic function and facial blood flow in unilateral migraine headache.J Neurol Neurosurg Psychiatr 1990;53: 121–125.

    PubMed  Google Scholar 

  55. Del Bianco PL, Franchi G, Anselmi B, Sicuteri F. Monoamine sensitivity of smooth musclein vivo in nociceptive disorders. In: Critchley M, Friedman AP, Gorini S, Sicuteri F, eds.Advances in Neurology, Headache, Physiopathological and Clinical Concepts. Vol. 33. New York: Raven Press, 1982: 391–398.

    Google Scholar 

  56. Ghose K, Coppen A, Carroll D. Intravenous tyramine response in migraine before and during treatment with indoramin.BMJ 1977;1: 1191–1193.

    PubMed  Google Scholar 

  57. Fagius J. Muscle nerve sympathetic activity in migraine. Lack of abnormality.Cephalalgia 1985;5: 197–203.

    PubMed  Google Scholar 

  58. Lance JW.Mechanism and Management of Headache. Oxford: Butterworth-Heinemann, 1993.

    Google Scholar 

  59. Schoenen J, Maertens de Noordhout A. The role of the sympathetic nervous system in migraine and cluster headache. In: Olesen J, Edvinsson L, eds.Basic Mechanisms of Headache. Amsterdam: Elsevier Science: 393–410.

  60. Maertens de Noordhout A, Timsit-Berthier M, Schoenen J. Contigent negative variation in headache.Ann Neurol 1986;19: 78–80.

    PubMed  Google Scholar 

  61. Anthony M. The biochemistry of migraine. In: Vinken PJ, Bruyn GW, Clifford Rose F, eds.Handbook of Clinical Neurology. Vol 4 (48). Amsterdam: Elsevier Science, 1986; 85–105.

    Google Scholar 

  62. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache.Ann Neurol 1990;28: 183–187.

    PubMed  Google Scholar 

  63. Friberg L, Olesen J, Olsen TS, Karle A, Ekman R, Fahrenkrug J. Absence of vasoactive peptide release from brain to cerebral circulation during onset of migraine with aura.Cephalalgia 1994;14: 47–54.

    PubMed  Google Scholar 

  64. Okada F, Miyagishi T, Honma M, Michio U. Plasma cyclic nucleotide responses to methacholine and epinephrine in patients with migraine.Headache 1984;24: 26–29.

    PubMed  Google Scholar 

  65. Hsu LK, Crisp AK, Kalucy RS,et al. Early morning migraine: nocturnal plasma levels of catecholamines, tryptophan, glucose and free fatty acids and the sleeping electrencephalographs.Lancet 1977;ii: 447–451.

    Google Scholar 

  66. Fog-Møller F, Genefke IK, Bryndum B. Changes in concentration of the catecholamines in blood during spontaneous migraine attacks and reserpine-induced attacks. In: Greene R, eds.Current Concepts in Migraine Research. New York: Raven Press, 1978: 115–120.

    Google Scholar 

  67. Mathew RJ, Ho BT, Kralik P, Taylor D, Claghorn JL. Catecholamines and migraine evidence on biofeedback induced changes.Headache 1980;20: 247–252.

    PubMed  Google Scholar 

  68. Anthony M. Biochemical indices of sympathetic activity in migraine.Cephalalgia 1981;1: 83–89.

    PubMed  Google Scholar 

  69. Schoenen J, Maertens de Noordhout A, Delwaide PJ. Plasma catecholamines in headache patients: clinical correlations.Cephalalgia 1985;5: 28–29.

    Google Scholar 

  70. D'Andrea G, Cananzi AR, Morra M, et al. Platelet as a model to test autonomic function in migraine.Funct Neurol 1989;4: 79–83.

    PubMed  Google Scholar 

  71. Winther K, Hedman C. Platelet adrenoreceptor function in migraine patients.Cephalagia 1985;5: 112–113.

    Google Scholar 

  72. Gotoh F, Tadashi K, Sakai F, Yamamoto M, Takeoka T. Serum dopamine ß-hydroxylase activity in migraine.Arch Neurol 1976;33: 657–666.

    Google Scholar 

  73. Curran AD, Hinterberger L, Lance JW. Total plasma serotonin, 5-hydroxyindoleacetic acid andp-hydroxy-m-methoxymandelic acid excretion in normal and migraineurs subjects.Brain 1965;88: 997–1010.

    PubMed  Google Scholar 

  74. Curzon G, Theaker P, Phillips B. Excretion of 5-hydroxyindolyl acetic acid (5-HIAA) in migraine.J Neurol Neurosurg Psychiatr 1966;29: 85–90.

    PubMed  Google Scholar 

  75. Sicuteri F. Vasoneuroactive substances and their implication in vascular pain.Res Clin Stud Headache 1967;1: 6–10.

    Google Scholar 

  76. Sicuteri F. Prophylactic and therapeutic properties of ULM-491 in migraine.Int Arch Allergy 1959;15: 300–307.

    PubMed  Google Scholar 

  77. Kimball RW, Friedman AP, Vallejo E. Effect of serotonin in migraine patients.Neurol Minneap 1960;10: 107–111.

    Google Scholar 

  78. Humphrey PPA, Feniuk W, Perren MJ, Connor HE, Oxford AW. The pharmacology of the novel 5HT1-like receptor agonist GR43175.Cephalalgia 1989;9 (suppl. 9): 23–33.

    PubMed  Google Scholar 

  79. Gillespie DD, Manier DH, Sanders-Bush E, Sulser F. The serotonin/norepinephrine-link in brain. II. Role of serotonin in the regulation of ß-adrenoceptors in the low agonist affinity conformation.J Pharmacol Exp Ther 1988;244: 154–159.

    PubMed  Google Scholar 

  80. Ferrari MD, Odink J, Tapparelli C, Van Kempen GMJ, Pennings EJM, Bruyn GW. Serotonin metabolism in migraine.Neurology 1989;39: 1239–1242.

    PubMed  Google Scholar 

  81. Somerville BM. Platelet-bound and free serotonin levels in jugular and forearm venous blood during migraine.Neurology 1976;26: 41–45.

    PubMed  Google Scholar 

  82. Ferrari MD. Systemic Biochemistry. In: Olesen J, Tfelt-Hansen P, Welch KMA, eds.The Headaches. New York: Raven Press, 1993: 179–183.

    Google Scholar 

  83. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature 1980;288: 373–376.

    PubMed  Google Scholar 

  84. Ignarro LJ, Byrrns RE, Wood KS. Pharmacological an biochemical properties of endothelium-derived relaxing factor (EDRF): evidence that it is closely related to nitric oxide (NO) radical.Circulation 1986;74 (suppl. 2): 287.

    Google Scholar 

  85. Furchgott RF, Khan MT, Some prperties of endothelium-derived relaxing factor (EDRF) released from endothelial cells of rabbit aorta.Fed Proc 1986;45: 425.

    Google Scholar 

  86. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature 1987;327: 524–526.

    PubMed  Google Scholar 

  87. Lüscher TF, Vanhoutte PM.The Endothelium: Modulator of Cardiovascular Functions. Ann Arbor, Boston: CRC Press, 1990.

    Google Scholar 

  88. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology.Pharmacol Rev 1991;43: 109–141.

    PubMed  Google Scholar 

  89. Axelsson KL, Wikberg JE, Anderson RG. Relationship between nitroglycerin, cyclic GMP and relaxation of vascular smooth muscle.Life Sci 1979;24: 1779–1789.

    PubMed  Google Scholar 

  90. Ignarro LJ, Lipton H, Edwards JCet al. Mechanisms of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement ofS-nitrosothiols as active intermediates.J Pharmacol Exp Ther 1981;218: 739–749.

    PubMed  Google Scholar 

  91. Feelisch M, Noack EA. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase.Eur J Pharmacol 1987;139: 19–30.

    PubMed  Google Scholar 

  92. Olesen J, Iversen HK, Thomsen LL. Nitric oxide supersensitivity. A possible molecular mechanism of migraine pain.Neuroreport 1993;4: 1027–1030.

    PubMed  Google Scholar 

  93. Thomsen LL, Kruuse C, Iversen HK, Olesen J. A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks.Eur J Neurol 1994;1: 73–80.

    Google Scholar 

  94. D'Andrea G, Cananzi AR, Perini Fet al. Decreased collageninduced platelet aggregation and increased arginine levels in migraine: a possible link with the NO pathway.Cephalalgia 1994;14: 352–357.

    PubMed  Google Scholar 

  95. Olesen J, Thomsen LL, Lassen LH, Jansen Olesen I. The nitric oxide hypothesis of migraine and other vascular headaches.Cephalalgia 1995;15: 94–100.

    PubMed  Google Scholar 

  96. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system.Ann Neurol 1988;23: 193–196.

    PubMed  Google Scholar 

  97. Graham JR, Wolff HG. Mechanisms of migraine headache and action of ergotamine tartrate.Arch Neurol Psychiatr 1938;39: 737–763.

    Google Scholar 

  98. Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache.Cephalalgia 1988;8: 83–91.

    PubMed  Google Scholar 

  99. Tfelt-Hansen P, Stewart Johnson E. Ergotamine. In: Olesen J, Tfelt-Hansen P, Welch KMA, eds.The Headaches. New York: Raven Press, 1993: 313–322.

    Google Scholar 

  100. Kaube H, Hoskin KL, Goadsby PJ. Inhibition by sumatriptan of central trigeminal neurons only after blood-brain barrier disruption.Br J Pharmacol 1993;109: 788–792.

    PubMed  Google Scholar 

  101. Caekebeke JFV, Ferrari MD, Zwetsloot CP, Jansen J, Saxena PR. Antmigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks.Neurology 1992;42: 1522–1526.

    PubMed  Google Scholar 

  102. Buzzi MG, Moskowitz MA. The antimigraine drug sumatriptan (GR43175) selectively blocks neurogenic plasma extravasation from blood vessels in dura mater.Br J Phamacol 1990;99: 202–206.

    Google Scholar 

  103. Goadsby PJ, Edvinsson L. Sumatriptan reverses the changes in calcitonin gene-related peptide seen in the headache phase of migraine.Cephalalgia 1991:11 (suppl. 11): 3–4.

    Google Scholar 

  104. Moskowitz MA. Drug mechanisms in acute migraine. In: GF Gebhart, Hammond DL, Jensen TS, eds.Proceeedings of the 7th World Congress on Pain. Seattle: IASP Press, 1994: 755–764.

    Google Scholar 

  105. Moussaoui SM, Lee WS, Cutrer M, Bonici C, Garret C, Moskowitz MA. RPR 100893, a novel non-peptide antagonist of the human NK1 receptor: effect in two guinea-pig models of migraine; dural neurogenic inflammation and c-fos expression induced in the CNS by nociceptive stimulations. In: Clifford Rose F, eds.New Advances in Headache Research Vol 4. London: Smith Gordon, 1994: 327.

    Google Scholar 

  106. Tfelt- Hansen P, Welch KMA. Prioritizing prophylactic treatment. In: Olesen J, Tfelt-Hansen P, Welch KMA, eds.The Headaches. New York: Raven Press, 1993: 403–404.

    Google Scholar 

  107. Fozard JR, Kalkman HO. 5-Hydroxytryptamine (5-HT) and the initiation of migraine: new perspectives.Naunyn Schmiedebergs Arch Pharmacol 1994;350: 225–229.

    PubMed  Google Scholar 

  108. Glusa E, Richter M. Endothellum-dependent relaxation of porcine pulmonary arteries via 5-HT1c-like receptors.Naunyn Schmiedebergs Arch Pharmacol 1993;347: 471–477.

    PubMed  Google Scholar 

  109. Gray DW, Marshall I. Novel signal transduction pathway mediating endothelium-dependent ß-adrenoceptor vasorelaxation in rat thoracic aorta.Br J Pharmacol 1992;107: 684–690.

    PubMed  Google Scholar 

  110. Aikawa J, Akatsuka N. Vascular smooth muscle relaxation by endothelium-dependent ß 1-adrenergic action.Comp Biochem Physiol 1990;97: 311–315.

    Google Scholar 

  111. Martin GR, Browning C, Giles M. Futher characterisation of an atypical 5-HT receptor mediating endothelium-dependent vasorelaxation.Br J Pharmacol 1993;110: 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, L.L., Olesen, J. The autonomic nervous system and the regulation of arterial tone in migraine. Clinical Autonomic Research 5, 243–250 (1995). https://doi.org/10.1007/BF01818887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01818887

Keywords

Navigation