Skip to main content
Log in

Biomechanical activity of the growth plate

Clinical incidences

Comportement biomécanique du cartilage de croissance. Incidences cliniques

  • Published:
Anatomia Clinica Aims and scope Submit manuscript

Summary

The authors analyze at several levels the biomechanical activity of the epiphyseal plate.

From a histologic point of view, they show the role played by the different cell layers in growth.

The rapid growth of long bones is well known in animals, not entirely in human beings. The factors involved in mechanical regulation of the epiphyseal plate are analyzed according to distraction and compression stresses. Other factors have also been reported (periosteum and muscle).

Analysis of the literature reveals that biomechanical activity and the factors managing growth are not well known yet.

A combined effort should be made to obtain better understanding of the surgical procedures carried out in pediatric orthopedics.

Résumé

Les auteurs analysent le comportement biomécanique du cartilage de croissance à plusieurs niveaux.

Sur le plan histologique ils montrent le rôle joué dans la croissance par les différentes couches cellulaires.

La vitesse de croissance des os longs est bien connue chez les animaux et difficile à apprécier chez l'homme. Les facteurs intervenant dans la régulation mécanique du cartilage sont analysés en fonction des contraintes en compression et en détraction. Les autres facteurs (périoste et muscle) sont rapportés.

L'analyse de la littérature montre combien le comportement mécanique et les facteurs régissant la croissance sont mal connus et mériteraient un effort de recherche conjugué pour mieux comprendre la portée des gestes chirurgicaux en orthopédie infantile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M, Green WT (1948) Lengths of the femur and the tibia. Norms derived from orthoroentgenograms of children from 5 years of age until epiphysial closure. Am J Dis Child 75:279–290

    Google Scholar 

  2. Bonnel F, Peruchon E, Baldet P, Rabischong P (1980) Comportement mécanique du cartilage de conjugaison. Etude expérimentale en compression. Rev Chir Orthop 66:417–421

    PubMed  Google Scholar 

  3. Bonnel F, Peruchon E, Baldet P, Rabischong P (1980) Evaluation and control of growth activity of epiphyseal plate. Med Biol Eng Comp 54:396–400

    Google Scholar 

  4. Bonucci E (1970) Fine structure and histochemistry of calcifying globules in epiphyseal cartilage. Z Zellforsch 103:192

    PubMed  Google Scholar 

  5. Blount WP, Clarke GR (1949) Control of bone growth by epiphyseal stapling. A preliminary report. J Bone Joint Surg [Am] 31:464

    Google Scholar 

  6. Brighton CT, Ray RD, Soble LW, Kuettner KE (1969) In vitro epiphyseal-plate growth in various oxygen tensions. J Bone Joint Surg [Am] 51:1383–1396

    Google Scholar 

  7. Chalmers J (1965) A study of some factors controlling growth of transplanted skeletal tissue. Calcified tissues. LJ Richelle, MJ Dallemagne (eds) University of Liege, p 177

  8. Carey EJ (1922) Direct observations on the transformation of the mesenchyme in the thigh of the pig embryo (sus scrofa) with special reference of the genesis of the thigh muscles, of the knee and hip-joints and of the primary bone of the femur. J Morphol 37:1–78

    Google Scholar 

  9. Chung S (1976) Shear strength of the human femoral capital epiphysel plate. J Bone Joint Surg [Am] 58:94–103

    Google Scholar 

  10. Crilly RG (1972) Longitudinal overgrowth of chicken radius. J Anat 112:11–18

    PubMed  Google Scholar 

  11. Duben W (1956) Tierexperimentelle Untersuchungen über das weitere Verhalten temporär gebremster Wachstumsfugen. Bruns' Beitr Klin Chir 193:291–297

    Google Scholar 

  12. Dale GG, Martin WR (1958) Progressis of epiphyseal reparation. J Bone Joint Surg [Br] 40:116–122

    Google Scholar 

  13. Elo JO (1960) The effect of subperiosteally implanted autogeneous whole-thickness skin graft on growing bone. An experimental study. Acta Orthop Scand (suppl) 45

  14. Ehrlich MG, Mankin HJ, Treadwell BV (1972) Biochemical and physiological events during closure of the stapled distal femoral epiphyseal plate in rats. J Bone Joint Surg [Am] 54:309–322

    Google Scholar 

  15. Fell HB, Dingle AT: Studies on the mode of action of excess of vitamin A. 6. Lysosomal protease and the degradation of cartilage matrix. Biochem J 87:403–408

  16. Fishbame B (1976) Continuous transphyseal traction. The Johns Hopkins Med J 138:79–81

    Google Scholar 

  17. Frost HM (1961) Measurement of the biological half-life of bones with the aid of Tetracyclines. Henry Ford Hospital Bulletin 9:87

    Google Scholar 

  18. Gatewood Mullen, BP (1927) Experimental observations on the growth of long bones. Arch Surg 15:215–221

    Google Scholar 

  19. Gelbke H (1951) The influence of pressure and tension on growing bone in experiments with animals. J Bone Joint Surg [Am] 33:947–954

    Google Scholar 

  20. Haas SL (1945) Retardation of bone growth by a wire loop. J Bone Joint Surg [Am] 27:25–36

    Google Scholar 

  21. Haas SL (1950) Restriction of bone growth by pins through the epiphyseal cartilaginous plate. J Bone Joint Surg [Am] 32:338–343

    Google Scholar 

  22. Hall Craggs E (1968) The effect of experimental epiphysiodesis on growth in length of the rabbit tibia. J Bone Joint Surg [Br] 50:392–400

    Google Scholar 

  23. Hansson LI (1964) Determination of endochondral bone growth in rabbit by means of oxytetracycline. Acta Univ Lund sectio II, n∮1

  24. Harris WH, Jackson RH, Jowsey J (1962) The “in vivo” distribution of tetracyclines in canine. J Bone Joint Surg [Am] 44:1308

    Google Scholar 

  25. Hert J (1969) Acceleration of the growth after decrease of load on epiphyseal plates of spring distractors. Folia Morphol (Warsz) 17:194–203

    Google Scholar 

  26. Houghton GR, Duriez J (1980) Allongement tibial par élongation du cartilage de croissance tibial supérieur. Rev Chir Orthop 66:351–356

    PubMed  Google Scholar 

  27. Hueter C (1862) Anatomische Studien an den Extremitätengelenken Neugeborener und Erwachsener. Virchow's Arch 25:575–599

    Google Scholar 

  28. James JM, Musgrove JE (1949) Effect of arteriovenous fistula on growth of bone. Preliminary report. Proc Mayo Clin 24:405

    Google Scholar 

  29. Keith A (1920) Studies on the anatomical changes which accompany growth-disorders of the human body. J Anat 54:101–115

    Google Scholar 

  30. Kember NF (1972) Comparative patterns of cell division epiphyseal cartilage in the rat. J Anat 111:137–142

    PubMed  Google Scholar 

  31. Lacroix P (1947) Excitation de la croissance en longueur du tibia par décollement de son périoste diaphysaire. Rev Orthop 33:3–6

    Google Scholar 

  32. Langenskold A (1947) Normal and pathological bone growth in the light of the development of cartilaginous foci in chondrodysplasia. Acta Chir Scand 95:367–386

    Google Scholar 

  33. Leblond CP, Greulich RC (1961) Au toradiographic studies of bone formation and growth. In: GH Bourne (ed) the biochemstry and physiology of bone. Academic press, New York, pp 325–358

    Google Scholar 

  34. Monticelli G, Spinelli R (1981) Distraction epiphysiolysis as a method of Circel lengthening. Clin Orthop 154:254–277

    PubMed  Google Scholar 

  35. Milch RA, Rall DP, Tobie JE (1958) Fluorescence of tetracycline antibiotics in bone. J Bone Joint Surg [Am] 40:897–910

    Google Scholar 

  36. Muller H (1858) Über die Entwicklung der Knochensubstanz nebst Bemerkungen über den Bau rachistischer Knochen. Z Wissensch Zool 9:147–233

    Google Scholar 

  37. Pease CN (1952) Local stimulation of growth of long bones. A preliminary report. J Bone Joint Surg [Am] 34:1–24

    Google Scholar 

  38. Persson BM (1968) Growth in length of bones in change of oxygen and carb dioxide tensions. Acta Orthop Scand (suppl) 117

  39. Pratt CWM, Mc Cance RA: Severe undernutrition in growing and adult animals. 12. The extremities of the long bones in pigs.

  40. Pouliquen JC, Chaboche P et al. (1980) Etude expérimentale sur le cartilage de croissance et les parties molles de l'allongement progressif du fémur chez le lapin en période de croissance. Chir Pediatr 21:363–367

    PubMed  Google Scholar 

  41. Pous JG, Dimeglio A, Bonnel F, Baldet P: Cartilage de conjugaison et croissance. Doin, Paris, 308 p

  42. Ranvier L (1967) Traité technique d'histologie. Paris. Quoted by Langenkiöd, Rytömaa and Videman.

  43. Ryoppy S: Transplantation of epiphyseal cartilage and cranical suture. Experimental studies on the preservation of the growth capacity in growing bone grafts. Acta Orthop Scand (suppl) 82

  44. Shapiro F (1977) Organisation and cellular biology of the perichondrial ossification groove of Ranvier. J Bone Joint Surg [Am] 59:703–723

    Google Scholar 

  45. Siffert RS (1956) The effects of staples and longitudinal wires on epihyseal growth. An experimental study. J Bone Joint Surg [Am] 38:1077–1088

    Google Scholar 

  46. Sijbrandij S (1963) Inhibition of tibial growth by means of compression of its proximal epiphysial disc in the rabbit. Acta Anat 55:278–285

    PubMed  Google Scholar 

  47. Silbermann M, Kedar T (1976) Quantitative changes in the cellular population of the growth plate of triamcinol one-treated mice. Acta Anat 97:396–400

    Google Scholar 

  48. Sissons HA (1953) Experimental determination of rate longitudinal bone growth. J Anat 87:228–236

    PubMed  Google Scholar 

  49. Solomon L (1966) Diametric growth of the epiphyseal plate. J Bone Joint Surg [Br] 48:170–177

    Google Scholar 

  50. Strobino LJ, French GO, Colonna PC (1952) The effect of increasing tension on the growth of epiphyseal bone. Surg Gynecol Obstet 95:694–700

    PubMed  Google Scholar 

  51. Tschantz P, Rutishauser E (1967) La surcharge mécanique de l'os vivant. Ann Anat Pathol 12:233–248

    Google Scholar 

  52. Trueta, Joseph, Amato VP (1960) The vascular contribution to osteogenisis. II. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg [Br] 42:571–587

    Google Scholar 

  53. Volkmann R (1869) Die Krankheiten der Bewegungsorgane. In: F Pitas, CAT Billoth (eds) Handbuch der allgemeinen und speciellen Chirurgie, Bd II, Abt 1. Ferdinand Enken, Erlangen, pp 350–351

    Google Scholar 

  54. Wolff J (1882) Das Gesetz der Transformation der Knochen. August Hirschwald, Berlin. A I P Inserm n∮ 42 76 74

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnel, F., Dimeglio, A., Baldet, P. et al. Biomechanical activity of the growth plate. Anat. Clin 6, 53–61 (1984). https://doi.org/10.1007/BF01811214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01811214

Key words

Navigation