Skip to main content
Log in

Single copy DNA homology in sea stars

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The sequence homology in the single copy DNA of sea stars has been measured. Labeled single copy DNA fromPisaster ochraceus was reannealed with excess genomic DNA fromP. brevispinus, Evasterias troschelii, Pycnopodia helianthoides, Solaster stimpsoni, andDermasterias imbricata. Reassociation reactions were performed under two criteria of salt and temperature. The extent of reassociation and thermal denaturation characteristics of hybrid single copy DNA molecules follow classical taxonomic lines.P. brevispinus DNA contains essentially all of the sequences present inP. ochraceus single copy tracer whileEvasterias andPycnopodia DNAs contain 52% and 46% of such sequences respectively. Reciprocal reassociation reactions with labeledEvasterias single copy DNA confirm the amount and fidelity of the sequence homology. There is a small definite reaction of uncertain homology betweenP. ochraceus single copy DNA andSolaster orDermasterias DNA. SimilarlySolaster DNA contains sequences homologous to approximately 18% ofDermasterias unique DNA. The thermal denaturation temperatures of heteroduplexes indicate that the generaPisaster andEvasterias diverged shortly after the divergence of the subfamilies Pycnopodiinae and Asteriinae. The twoPisaster species diverged more recently, probably in the most recent quarter of the interval since the separation of the generaPisaster andEvasterias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angerer RC, Davidson EH, Britten RJ (1976) Chromosoma 56:213–226

    PubMed  Google Scholar 

  • Belford HS, Thompson NF (1977) Carnegie Institute of Washington Yearbook 76:246–252

    Google Scholar 

  • Bonner TI, Heinemann R, Todaro GJ (1980) Nature 286:420–423

    PubMed  Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) In: Grossman L, and Moldave K (eds) Methods in Enzymology Vol 29, Part E Academic Press, New York, pp 363–418

    Google Scholar 

  • Britten RJ, Cetta A, Davidson EH (1978) Cell 15:1175–1186

    PubMed  Google Scholar 

  • Brykov VA, Volfson VG, Vorobev VI (1979) Chromosoma 74:105–124

    PubMed  Google Scholar 

  • Commerford SL (1971) Biochemistry 10:1993–1999

    PubMed  Google Scholar 

  • Chamberlin ME, Galau GA, Britten RJ, Davidson EH (1978) Nucleic Acids Res 5:2073–2094

    PubMed  Google Scholar 

  • Davidson EH, Hough BR, Amenson CS, Britten RJ (1973) J Mol Biol 77:1–24

    PubMed  Google Scholar 

  • Eden FC, Hendrick JP, Gottlieb SS (1978) Biochemistry 17:5113–5121

    PubMed  Google Scholar 

  • Fraser A, Gomez J, Hartwick EB, Smith MJ (1981) Can J Zool (in press)

  • Galau GA, Chamberlin ME, Hough BR, Britten RJ, Davidson EH (1976) In: Ayala FJ (ed) Molecular Evolution, Sinauer Press, Sunderland Mass, pp200–225

    Google Scholar 

  • Hall TJ, Grula JW, Davidson EH, Britten RJ (1980) J Mol Evol 16:95–110

    PubMed  Google Scholar 

  • Hanham AF, Smith MJ (1980) Comp Biochem Physiol 65B:333–338

    Google Scholar 

  • Harpold MM, Craig SP (1978) Differentiation 10:7–11

    PubMed  Google Scholar 

  • Hayes FN, Lilly EH, Ratliff RL, Smith DA, Williams DL (1970) Biopolymers 9:1105–1117

    PubMed  Google Scholar 

  • Hinegardner R (1974) Comp Biochem Physiol 49B:219–226

    Google Scholar 

  • Jukes TH (1980) Science 210:973–978

    PubMed  Google Scholar 

  • Kleene K, Humphreys T (1977) Cell 12:143–155

    PubMed  Google Scholar 

  • Kohne DE (1970) Quart Rev Biophysics 3:327–375

    Google Scholar 

  • Laird CD, McConaughy BL, McCarthy BJ (1968) Nature 224:149–154

    Google Scholar 

  • Murray MG, Thompson WF (1977) Carnegie Institution of Washington Yearbook 76:259–262

    Google Scholar 

  • Noll H (1967) Nature 215:360–363

    PubMed  Google Scholar 

  • Pearson W, Davidson EH, Britten RJ (1977) Nucleic Acids Res 4:1727–1737

    PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert H, Kolodner R, Dodgson J (1980) Cell 20:555–566

    PubMed  Google Scholar 

  • Rice NR (1974) Carnegie Institution of Washington Yearbook 73:1098–1102

    Google Scholar 

  • Roberts RJ, Wilson GA, Young FE (1977) Nature 265:82–84

    PubMed  Google Scholar 

  • Schmidtke J, Schmitt E, Matzke E, Engel W (1979) Chromosoma 75:185–198

    PubMed  Google Scholar 

  • Sibley CG, Ahlquist JE (1980) Second International Congress of Systematics and Evolutionary Biology, Vancouver, Canada, p 35

  • Smith MJ, Britten RJ, Davidson EH (1975) Proc Natl Acad Sci USA 72:4805–4809

    PubMed  Google Scholar 

  • Smith MJ, Boal R (1978) Can J Biochem 56:1048–1054

    PubMed  Google Scholar 

  • Smith MJ, Lui A, Gibson KK, Etzkorn JK (1980) Can J Biochem 58:352–360

    PubMed  Google Scholar 

  • Spencer WK, Wright CW (1966) In: Moore RC (ed) Treatise on Invertebrate Paleontology. Part U Echinodermata 3. Vol 1. The Geological Society of America Inc. and the University of Kansas Press

  • Stein DB, Thompson WF (1977) Carnegie Institute of Washington Yearbook 76:252–255

    Google Scholar 

  • Studier FW (1965) J Mol Biol 11:373–390

    PubMed  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Annu Rev Biochem 46:573–639

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.J., Nicholson, R., Stuerzl, M. et al. Single copy DNA homology in sea stars. J Mol Evol 18, 92–101 (1982). https://doi.org/10.1007/BF01810827

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01810827

Key words

Navigation