Skip to main content
Log in

Characterization of the estrogen receptor transfected MCF10A breast cell line 139B6

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

There has been increasing evidence which suggests that abnormal expression of the estrogen receptor (ER) protein in nonmalignant breast tissue may be important in the carcinogenic process. To examine the effects of ER expression in immortalized nonmalignant mammary epithelial cells, an expression vector containing human ER cDNA was transfected into the ER negative human breast cells, MCF10A. Characterization of a clone stably expressing ER, 139B6, provided evidence for the regulated synthesis of a functional ER capable of binding estradiol-17β (E2) and undergoing processing. Expression of the ER gene did not enable E2 to stimulate endogenous genes [progesterone receptor (PgR), pS2, cathepsin D and TGFα] which normally respond to estrogens in breast cancer cells. The ER in 139B6 cells was, however, capable of inducing expression of an ERE-regulated reporter gene, indicating its ability to interact with transcriptional machinery. Furthermore, cultures in log growth displayed a slight increase in doubling time in the presence of E2. These results indicate that ER expression alone is not sufficient to induce a transformed phenotype. Thus, the 139B6 cell line should provide a new model for determining what additional changes lead to increased growth potential in response to E2 and for exploring how E2 itself may help bring about changes leading to progression of preneoplastic breast epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Beatson GT: On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet ii: 104–107, 1896

    Google Scholar 

  2. Zajchowski DA, Sager R, Webster L: Estrogen inhibits the growth of estrogen receptor-negative, but not estrogen receptor-positive, human mammary epithelial cells expressing a recombinant receptor. Cancer Res 53: 5004–5011, 1993

    PubMed  Google Scholar 

  3. Brooks SC, Pauley R: Breast Cancer Biology. In: Dulbecco R (ed) Encyclopedia of Human Biology, vol 2. Academic Press Inc, San Diego, 1991, pp 53–65

    Google Scholar 

  4. Peterson OW, Hoyer PE, VanDeurs B: Frequence and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res 47: 5748–5751, 1987

    PubMed  Google Scholar 

  5. Khan SA, Rogers MAM, Obando JA, Tamsen A: Estrogen receptor expression of benign breast epithelium and its association with breast cancer. Cancer Res 54: 993–997, 1994

    PubMed  Google Scholar 

  6. Vogelstein B, Kinzler KW: The multistep nature of cancer. Trends in Genetics 9: 138–141, 1993

    PubMed  Google Scholar 

  7. Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 61: 759–767, 1990

    PubMed  Google Scholar 

  8. Bartek J, Bartkova J, Kyprianou N, Lalani E-N, Staskova Z, Shearer M, Chang S, Taylor-Papadimitriou J: Efficient immortalization of luminal epithelial cells from human mammary gland by introduction of Simian virus 40 large tumor antigen with a recombinant retrovirus. Proc Natl Acad Sci USA 88: 3520–3524, 1991

    PubMed  Google Scholar 

  9. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF10. Cancer Res 50: 6075–6086, 1990

    PubMed  Google Scholar 

  10. Briand P, Peterson OW, van Deurs B: A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined media.In vitro Cell Dev Biol 23: 181–188, 1987

    PubMed  Google Scholar 

  11. Caron de Fromentel C, Nardeux PC, Soressi T, Lavialle C, Estrade S, Carloni G, Chandrasekaran K, Carsingena R: Epithelial HBL-100 cell line derived from milk of an apparently healthy woman harbors SV40 genetic information. Exp Cell Res 16: 83–94, 1985

    Google Scholar 

  12. Stampfer MR, Bartley JC: Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82: 2394–2398, 1985

    PubMed  Google Scholar 

  13. Chang SE, Keen J, Lane EB, Taylor-Papadimitriou J: Establishment and characterization of SV40-transformed breast epithelial cell lines. Cancer Res 42: 2040–2053, 1982

    PubMed  Google Scholar 

  14. Gaffney EV: A cell line (HBL-100) established from breast milk. Cell Tissue Res 227: 563–568, 1982

    PubMed  Google Scholar 

  15. Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson Rees NA, Riggs JL, Gardner MB: Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J Natl Cancer Inst 58: 1795–1806, 1977

    PubMed  Google Scholar 

  16. Berry M, Metzger D, Chambon P: Role of the two activation domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 9: 2811–2818, 1990

    PubMed  Google Scholar 

  17. Metzger D, White JH, Chambon P: The human estrogen receptor functions in yeast. Nature 334: 31–36, 1988

    PubMed  Google Scholar 

  18. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J: Sequence and expression of human estrogen receptor complementary DNA. Science 231: 1150–1154, 1986

    PubMed  Google Scholar 

  19. Kushner PJ, Hort E, Shine J, Baxter JD, Greene GL: Construction of cell lines that express high levels of the human estrogen receptor and are killed by estrogens. Mol Endocrinol 4: 1465–1473, 1990

    PubMed  Google Scholar 

  20. Touitou I, Mathieu M, Rochefort H: Stable transfection of the estrogen receptor cDNA into HeLa cells induces estrogen responsiveness of endogenous cathepsin D gene but not of cell growth. Biochem Biophys Res Commun 169: 109–115, 1990

    PubMed  Google Scholar 

  21. Sadovsky Y, Kushner PJ, Roberts JM, Riemer RK: Restoration of estrogen-dependent progesterone receptor expression in a uterine myocyte cell line. Endocrinology 132: 1609–1613, 1993

    PubMed  Google Scholar 

  22. Migliaccio S, Davis VL, Gibson MK, Gray TK, Korach KS: Estrogens modulate the responsiveness of osteoblast-like cells (ROS 17/2.8) stably transfected with estrogen receptor. Endocrinology 130: 2617–2624, 1992

    PubMed  Google Scholar 

  23. Jiang SY, Jordan VC: Growth regulation of estrogen receptor-negative breast cancer cells transfected with complementary DNAs for estrogen receptor. J Natl Cancer Inst 8: 580–591, 1992

    Google Scholar 

  24. Zajchowski DA, Sager R: Induction of estrogen-regulated genes differs in immortal and tumorigenic human mammary epithelial cells expressing a recombinant estrogen receptor. Mol Endocrinol 5: 1613–1623, 1991

    PubMed  Google Scholar 

  25. Wiese TE, Kral LG, Dennis KE, Butler WB, Brooks SC: Optimization of estrogen growth response in MCF-7 cells.In vitro Cell Dev Biol 28A: 595–602, 1992

    PubMed  Google Scholar 

  26. Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I, Chambon P: The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J 8: 1981–1986, 1989

    PubMed  Google Scholar 

  27. Gunning P, Leavitt J, Muscat G, Ng S-Y, Kedes L: A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci USA 84: 4831–4835, 1987

    PubMed  Google Scholar 

  28. Green S, Issemann I, Sheer E: A versatilein vivo andin vitro eukaryotic expression vector for protein engineering. Nucleic Acids Res 16: 369, 1988

    PubMed  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 2nd edition, Cold Spring Harbor Laboratory Press, 1989

  30. Ausubel FM, Brent R, Kingston RE, More DM, Smith JA, Seidman JG, Struhl K (eds) Current Protocols in Molecular Biology. Greene Publishing Associates and Wiley Interscience, New York, 1987

    Google Scholar 

  31. Davis MD, Butler WB, Brooks SC: Induction of tissue plasminogen activator mRNA and activity by structurally altered estrogens. J Steroid Biochem Mol Biol 52: 421–430, 1995

    PubMed  Google Scholar 

  32. Pilat MJ, Hafner MS, Kral LG, Brooks SC: Differential induction of pS2 and cathepsin D mRNAs by structurally altered estrogens. Biochemistry 32: 7009–7015, 1993

    PubMed  Google Scholar 

  33. Davies IJ, Naftolin F, Ryan KJ, Fishman J, Siu J: The affinity of catechol estrogens for estrogen receptors in the pituitary and anterior hypothalamus of the rat. Endocrinology 97: 554–557, 1975

    PubMed  Google Scholar 

  34. Scatchard G: The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–672, 1949

    Google Scholar 

  35. Vander Kuur JA, Wiese T, Brooks SC: Influence of estrogen structure on nuclear binding and progesterone receptor induction by the receptor complex. Biochemistry 32: 7002–7008, 1993

    PubMed  Google Scholar 

  36. Kral L, Doherty LM, Brooks SC: Quantitative determination of nuclear estrogen receptors by an enzyme immunoassay: applications and caveats. J Steroid Biochem 31: 459–466, 1988

    PubMed  Google Scholar 

  37. Burton KA: A study of conditions and mechanism of diphenylamine reaction for the colormetric estimation of deoxyribonucleic acid. Biochem J 62: 315–322, 1956

    PubMed  Google Scholar 

  38. Butler WB: Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle. Anal Biochem 141: 70–73, 1984

    PubMed  Google Scholar 

  39. Brash DE, Reddel RR, Quanrud M, Yang K, Farrell MP, Harris CC: Strontium phosphate transfection of human cells in primary culture: stable expression of the Simian virus 40 large T-antigen gene in primary human bronchial epithelial cells. Mol Cell Biol 7: 2031–2034, 1987

    PubMed  Google Scholar 

  40. VanderKuur JA, Hafner MS, Christman JK, Brooks SC: Effects of estradiol-17β analogues on activation of estrogen responsive element regulated chloramphenicol acetyltransferase expression. Biochemistry 32: 7016–7021, 1993

    PubMed  Google Scholar 

  41. Gorman CM, Moffat LF, Howard BH: Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044–1049, 1982

    PubMed  Google Scholar 

  42. Gyling M, Leclercq G: Estrogen and antiestrogen interaction with estrogen receptor of MCF7 cells — relationship between processing and estrogenicity. J Steroid Biochem 29: 1–8, 1988

    PubMed  Google Scholar 

  43. Saceda M, Lippman ME, Chambon P, Lindsey RL, Ponglikitmongkol M, Puente M, Martin MB: Regulation of the estrogen receptor in MCF-7 cells by estradiol. Mol Endocrinol 2: 1157–1162, 1988

    PubMed  Google Scholar 

  44. Brooks SC, Hansen ER, Saunders DE, Battelli MG, Shafie SM: Effect of growth on the estrogen receptor levels in MCF-7 cells. Cancer Res 44: 3724–3729, 1984

    PubMed  Google Scholar 

  45. Horwitz KB, McGuire WL: Estrogen control of progesterone receptor in human breast cancer: correlation with nuclear processing of estrogen receptor. J Biol Chem 253: 2223–2228, 1978

    PubMed  Google Scholar 

  46. Danilition SL, Frederickson RM, Taylor CY, Miyamoto NG: Transcription factor binding and spacing constraints in the human beta-actin proximal promoter. Nucleic Acids Res 19: 6913–6922, 1991

    PubMed  Google Scholar 

  47. Morishita H, Nakamura N, Yamakawa T, Ogino H, Kanamori T, Nobuhara M, Namba M: Stable expression of human tissue-type plasminogen activator regulated by beta-actin promoter in three human cell lines: HeLa, WI-38 VA13, and KMS-5. Biochim Biophys Acta 1090: 216–222, 1991

    PubMed  Google Scholar 

  48. Rhode PR, Gorski J: Growth and cell cycle regulation of mRNA levels in GH3 cells. Mol Cell Endocrinol 82: 11–22, 1991

    PubMed  Google Scholar 

  49. Greenberg ME, Ziff EB: Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433–438, 1984

    PubMed  Google Scholar 

  50. Zajchowski DA, Band V, Trask DK, Kling D, Connolly JL, Sager R: Suppression of tumor-forming ability and related traits in MCF-7 human breast cancer cells by fusion with immortal mammary epithelial cells. Proc Natl Acad Sci USA 87: 2314–2319, 1990

    PubMed  Google Scholar 

  51. Cavailles V, Garcia M, Rochefort H: Regulation of the cathepsin D and pS2 gene expression by growth factors in MCF-7 human breast cancer cells. Mol Endocrinol 3: 552–558, 1989

    PubMed  Google Scholar 

  52. May FEB, Westley BR: Cloning of estrogen-regulated messenger RNA sequences from human breast cancer cells. Cancer Res 46: 6034–6040, 1986

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilat, M.J., Christman, J.K. & Brooks, S.C. Characterization of the estrogen receptor transfected MCF10A breast cell line 139B6. Breast Cancer Res Tr 37, 253–266 (1996). https://doi.org/10.1007/BF01806507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806507

Key words

Navigation