Skip to main content
Log in

Antiestrogenic properties of keoxifene,trans-4-hydroxytamoxifen, and ICI 164384, a new steroidal antiestrogen, in ZR-75-1 human breast cancer cells

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The agonistic/antagonistic properties of two non-steroidal antiestrogens, namelytrans-4-monohydroxy-tamoxifen (OH-TAM) and keoxifene (LY156758), and the new steroidal antiestrogen ICI164384, a 7β-alkylamide derivative of estradiol (E2), were assessed by measuring their effect on the proliferation of ZR·75-1 cells, an estrogen-responsive human breast cancer cell line. While subnanomolar concentrations of both OH-TAM and LY156758 had significant estrogenic stimulatory activity on cell growth in the absence of estrogens and higher concentrations were inhibitory, ICI164384 behaved exclusively as a growth inhibitor and more potently so than the two other compounds. The three antiestrogens had similar potency to inhibit the mitogenic effect of E2 and at 300 nM, all antiproliferative effects were completely reversible by the estrogen. ICI164384 was a weaker competitor of3H-labeled E2 or R2858 (moxestrol) uptake in intact ZR-75-1 cells in a 1-hour assay, partly because of a slower intracellular access to estrogen specific binding sites. Moreover, ICI164384 interacted in a rapidly (~ 6 h) reversible manner with estrogen-specific binding sites, while the non-steroidal antiestrogens induced a longer-acting (> 24 h) down-regulation of specific [3H]R2858 uptake. The present data indicate that, among the antiestrogens studied, ICI164384 is the only compound acting as a pure antiestrogen in ZR-75-1 breast cancer cells, while LY156758 and OH-TAM behave as antiestrogens endowed with partial agonistic activity in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dickson RB, Lippman ME: Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr Rev 8: 29–43, 1987

    PubMed  Google Scholar 

  2. Wells SA Jr, Santen RJ: Ablative procedures in patients with metastatic breast carcinoma. Cancer 53: 762–765, 1984

    PubMed  Google Scholar 

  3. Miller WR: Fundamental research leading to improved endocrine therapy for breast cancer. J Steroid Biochem 27: 477–485, 1987

    PubMed  Google Scholar 

  4. Dowsett M, Goss PE, Powles TJ, Hutchinson G, Brodie AMH, Jeffcoate SL, Coombes RC: Use of the aromatase inhibitor 4-hydroxyandrostenedione in postmenopausal breast cancer: optimization of therapeutic dose and route. Cancer Res 47: 1957–1961, 1987

    PubMed  Google Scholar 

  5. McNab MW, Tallarida RJ, Joseph R: An evaluation of tamoxifen as a partial agonist by classical receptor theory, an explanation of the dual action of tamoxifen. Eur J Pharmacol 103: 321–326, 1984

    PubMed  Google Scholar 

  6. Furr BJ, Jordan VC: The pharmacology and clinical uses of tamoxifen. Pharmac Ther 25: 127–205, 1984

    Google Scholar 

  7. Sutherland RL, Murphy LC: Mechanisms of oestrogen antagonism by non-steroidal antioestrogens. Mol Cell Endocrinol 25: 5–23, 1982

    PubMed  Google Scholar 

  8. Gottardis MM, Robinson SP, Satyaswaroop PG, Jordan VC: Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res 48: 812–815, 1988

    PubMed  Google Scholar 

  9. Jordan VC, Collin MM, Rowsby L, Prestwich G: A monohydroxylated metabolite of tamoxifen with potent anties-trogenic activity. J Endocrinol 75: 305–316, 1977

    PubMed  Google Scholar 

  10. Katzenellenbogen BS, Norman MJ, Eckert RL, Peltz SW, Mangel WF: Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxytamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res 44: 112–119, 1984

    PubMed  Google Scholar 

  11. Wakeling AE, Slater SR: Biochemical and biological aspects of anti-oestrogen action. In: G.P. Lewis and M. Ginsburg (eds.) Mechanisms of Hormone Action. London: MacMillan Press, 159–171, 1981

    Google Scholar 

  12. Black LJ, Goode RL: Uterine bioassay of tamoxifen, trioxifene and a new antiestrogen (LY117018) in rats and mice. Life Sci 26: 1453–1458, 1980

    PubMed  Google Scholar 

  13. Black LJ, Jones CD, Falcone JF: Antagonism of estrogen action with a new benzothiophene derivative. Life Sci 32: 1031–1036, 1983

    PubMed  Google Scholar 

  14. Bucourt R, Vignau M, Torelli V, Richard-Foy H, Geynet C, Secco-Milet C, Redeuil HG, Baulieu EE: New biospecific absorbents for the purification of estradiol receptor. J Biol Chem 253: 8221–8228, 1978

    PubMed  Google Scholar 

  15. Wakeling AE, Bowler J: Steroidal pure antioestrogens. J Endrocrinol 112: R7-R10, 1987

    Google Scholar 

  16. Wakeling AE, Bowler J: Biology and mode of action of pure antioestrogens. J Steroid Biochem 30: 141–147, 1988

    PubMed  Google Scholar 

  17. Wakeling AE, Bowler J: Novel antioestrogens without partial agonist activity. In: Advances in Cancer Research and Therapy. New York: Raven Press (in press)

  18. Engel LW, Young NA, Tralka TS, Lippman ME, O'Brien SJ, Joyce MJ: Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res 38: 3352–3364, 1978

    PubMed  Google Scholar 

  19. Cailleau R, Young R, Olive M, Reeves WJ Jr: Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53: 661–674, 1974

    PubMed  Google Scholar 

  20. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS: Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 83: 2496–2500, 1986

    PubMed  Google Scholar 

  21. Poulin R, Baker D, Labrie F: Androgens inhibit basal and estrogen-induced cell proliferation in the ZR-75-1 human breast cancer cell line. Breast Cancer Res Treat 12: 213–225, 1988

    PubMed  Google Scholar 

  22. Horwitz KB, Zava DT, Thilagar AK, Jensen ET, McGuire WL: Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res 38: 2434–2437, 1978

    PubMed  Google Scholar 

  23. Taylor CM, Blanchard B, Zava DT: A simple method for the whole-cell uptake of radiolabeled estrogens and progesterone and their subcellular localization in breast cancer cell lines in monolayer cultures. J Steroid Biochem 20: 1083–1088, 1984

    PubMed  Google Scholar 

  24. Rodbard D: Apparent positive cooperative effect in cyclic AMP and corticosterone production by isolated adrenal cells in response to ACTH analogs. Endocrinology 94: 1427–1437, 1974

    PubMed  Google Scholar 

  25. Cheng Y, Prusoff WH: Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22: 2099–3108, 1973

    Google Scholar 

  26. Munson PJ, Rodbard D: An exact correction to the ‘Cheng-Prusoff’ correction. J Rec Res 8: 533–546, 1988

    Google Scholar 

  27. Kramer CY: Extension of multiple-range test to group means with unique numbers of replications. Biometrics 12: 307–310, 1956

    Google Scholar 

  28. Taylor CM, Blanchard B, Zava DJ: Estrogen receptor-mediated and cytotoxic effects of the antiestrogens tamoxifen and 4-hydroxytamoxifen. Cancer Res 44: 1409–1414, 1984

    PubMed  Google Scholar 

  29. Bardon S, Vignon F, Derocq D, Rochefort H: The antiproliferative effect of tamoxifen in breast cancer cells: mediation by the estrogen receptor. Mol Cell Endocrinol 35: 89–96, 1984

    PubMed  Google Scholar 

  30. Sutherland RL, Watts CKW, Ruenitz PC: Definition of two distinct mechanisms of action of antiestrogens on human breast cancer cell proliferation using hydroxytripheny-lethylenes with high affinity for the estrogen receptor. Biochem Biophys Res Commun 140: 523–529, 1986

    PubMed  Google Scholar 

  31. Osborne CK, Monaco ME, Kahn CR, Huff K, Bronzert D, Lippman ME: Direct inhibition of growth and antagonism of insulin action by glucocorticoids in human breast cancer cells in culture. Cancer Res 39: 2422–2428, 1979

    PubMed  Google Scholar 

  32. Poulin R, Labrie F: Stimulation of cell proliferation and estrogenic response by adrenal C195-steroids in the ZR-75-1 human breast cancer cell line. Cancer Res 46: 4933–4937, 1986

    PubMed  Google Scholar 

  33. Adams JB: Control of secretion and the function of the human adrenal gland. Mol Cell Endocrinol 41: 1–17, 1985

    PubMed  Google Scholar 

  34. Nelson K, van Nagell JR, Gallion H, Donaldson ES, Pavlik EJ: Estrogens and antiestrogens mediate contrasting transitions in estrogen receptor conformation which determine chromatin access: a review and synthesis of recent observations. Prof Clin Biol Res 262: 85–104, 1988

    Google Scholar 

  35. Gyling M, Leclercq G: Estrogen and antiestrogen interaction with estrogen receptor of MCF-7 cells. Relationship between processing and estrogenicity. J Steroid Biochem 29: 1–8, 1988

    PubMed  Google Scholar 

  36. Raynaud JP, Martin PM, Bouton MM, Ojasoo T: 11β-Methoxy-17α-ethynyl-1,3,5(10)-estratriene-3,17β-diol (Moxestrol), a tag for estrogen receptor binding in human tissues. Cancer Res 38: 3044–3050, 1978

    PubMed  Google Scholar 

  37. Horwitz KB, McGuire WL: Nuclear mechanism of estrogen action. Effect of estradiol and antiestrogens on estrogen receptors and nuclear receptor processing. J Biol Chem 253: 8185–8191, 1978

    PubMed  Google Scholar 

  38. Poulin R, Mérand Y, Labrie F: Antiestrogenic properties of 7α-alkylated derivatives of estradiol in ZR-75-1 human breast cancer cells. 1st Congress of the International Society of Gynecological Endocrinology. Crans-Montana (Switzerland), March 6–12, Abstract no 78, 1988

  39. Reddel RR, Sutherland RL: Tamoxifen stimulation of human breast cancer cell proliferationin vitro: a possible model for tamoxifen tumor flare. Eur J Cancer Clin Oncol 20: 1419–1424, 1984

    PubMed  Google Scholar 

  40. Sonnenschein C, Papendorp JT, Soto AM: Estrogenic effect of tamoxifen and its derivatives on the proliferation of MCF-7 human breast cancer cells. Life Sci 37: 387–394, 1985

    PubMed  Google Scholar 

  41. Vignon F, Bouton MM, Rochefort H: Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochem Biophys Res Commun 146: 1502–1508, 1987

    PubMed  Google Scholar 

  42. Katzenellenbogen BS, Kendra KL, Norman MJ, Berthois Y: Proliferation, hormonal responsiveness and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term absence of estrogens. Cancer Res 47: 4355–4360, 1987

    PubMed  Google Scholar 

  43. Simard J, Labrie F: Keoxifene shows pure antiestrogenic activity in pituitary gonadotrophs. Mol Cell Endocrinol 39: 141–144, 1985

    PubMed  Google Scholar 

  44. Gulino A, Barrera G, Vacca A, Farina A, Feretti C, Screpanti I, Dianzani MV, Fratti L: Calmodulin antagonism and growth-inhibiting activity of triphenylethylene antiestrogens in MCF-7 human breast cancer cells. Cancer Res 46: 6274–6278, 1986

    PubMed  Google Scholar 

  45. Greenberg DA, Carpenter CL, Messing RD: Calcium channel antagonist properties of the antineoplastic antiestrogen tamoxifen in the PC12 neurosecretory cell line. Cancer Res 47: 70–74, 1987

    PubMed  Google Scholar 

  46. Zava DT, Chamness GC, Horwitz KB, McGuire WL: Human breast cancer: biologically active estrogen receptor in the absence of estrogen? Science 196: 663–664, 1977

    PubMed  Google Scholar 

  47. Bardon S, Vignon F, Montcourrier P, Rochefort H: Steroid receptor-mediated cytotoxicity of an antiestrogen and an antiprogestin in breast cancer cells. Cancer Res 47: 1441–1448, 1987

    PubMed  Google Scholar 

  48. Eckert RL, Katzenellenbogen BS: Effects of estrogens and antiestrogens on estrogen receptor dynamics and the induction of progesterone receptor in MCF-7 human breast cancer cells. Cancer Res 42: 139–144, 1982

    PubMed  Google Scholar 

  49. Strobl JS, Kasid A, Huff K, Lippman ME: Kinetic alterations in estrogen receptors associated with estrogen receptor processing in human breast cancer cells. Endocrinology 115: 1116–1124, 1984

    PubMed  Google Scholar 

  50. Weichman BM, Notides AC: Estradiol binding kinetics of the activated and unactivated estrogen receptor. J Biol Chem 252: 8856–8862, 1977

    PubMed  Google Scholar 

  51. Kasid A, Huff K, Greene GL, Lippman ME: A novel nuclear form of estradiol receptor in MCF-7 human breast cancer cells. Science 225: 1162–1165, 1984

    PubMed  Google Scholar 

  52. Stroessel S, Leclercq G: Competitive binding assay for estrogen receptor activation potency. J Steroid Biochem 25: 667–682, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulin, R., Merand, Y., Poirier, D. et al. Antiestrogenic properties of keoxifene,trans-4-hydroxytamoxifen, and ICI 164384, a new steroidal antiestrogen, in ZR-75-1 human breast cancer cells. Breast Cancer Res Tr 14, 65–76 (1989). https://doi.org/10.1007/BF01805977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01805977

Key words

Navigation