Skip to main content
Log in

Molecular basis of ornithine transcarbamylase deficiency lacking enzyme protein

  • Published:
Journal of Inherited Metabolic Disease

Abstract

We report an ornithine transcarbamylase(OTC)-deficient male patient who had no detectable immunoreactive materials but did have active mRNA for OTC-related protein. The total absence of OTC activity in the liver of the patient was caused by a complete lack of immunoreactive material, as determined by Ouchterlony double immunodiffusion, single radial immunodiffusion, and sodium dodecylsulphate-polyacrylamide gel electrophoresis of immunoprecipitate and of liver homogenate.

However, mRNA coding for the precursor of OTC was clearly detected in autopsy specimens of the patient's liver as well as of controls in a cell-free translation system consisting of rabbit reticulocyte lysates and [35S]methionine. The labelled precursor of OTC synthesizedin vitro with mRNA from the patient could be transported into rat liver and kidney mitochondria and processed to form a protein with a mulecular weight indistinguishable from mature OTC, suggesting that there was no defect in the protein structure necessary for its transport into mitochondria. These results suggest that the primary defect of the OTC deficiency was located in the structural gene and that the labile OTC-related protein, after being synthesized with its mRNA, was degraded too rapidly to be detected by the method used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Briand, P., Francois, B., Rabier, D. and Cathelineau, L. Ornithine transcarbamylase deficiencies in human males: Kinetic and immunochemical classification.Biochim. Biophys. Acta 704 (1982) 100–106

    PubMed  Google Scholar 

  • Cathelineau, L., Briand, P., Petit, F., Nuyts, J.-P., Farriaux, J.-P. and Kamoun, P. P. Kinetic analysis of a new human ornithine carbamyltransferase variant.Biochim. Biophys. Acta 614 (1980) 40–45

    PubMed  Google Scholar 

  • Ceriotti, G. and Spandrio, L. A spectrophotometric method for determination of urea.Clin. Chim. Acta 8 (1963) 295–299

    PubMed  Google Scholar 

  • Chalevelakis, G., Clegg, J. B. and Weatherall, D. J. Inbalanced globin chain synthesis in heterozygous β-thalassemic bone marrow.Proc. Natl. Acad. Sci. USA 72 (1975) 3853–3857

    PubMed  Google Scholar 

  • Imagawa, M., Yoshitake, S., Hamaguchi, Y., Ishikawa, E., Niitsu, Y., Urushizaki, I., Kanazawa, R., Tachibana, S., Nakazawa, N. and Ogawa, H. Characteristics and evaluation of antibody-horseradish peroxidase conjugates prepared by using a maleimide compound, glutaraldehyde and periodate.J. Appl. Biochem. 4 (1982) 41–57

    Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227 (1970) 680–685

    PubMed  Google Scholar 

  • Levin, B., Abraham, J. M., Oberholzer, V. G. and Burgess, E. A. Hyperammonemia: A deficiency of liver ornithine transcarbamylase. Occurrence in mother and child.Arch. Dis. Child 44 (1969) 152–161

    PubMed  Google Scholar 

  • Mancini, G., Carbanara, A. O. and Heremans, J. F. Immunochemical quantitation of antigens by single radial immunodiffusion.Immunochemistry 2 (1965) 235–254

    PubMed  Google Scholar 

  • Matsuda, I., Arashima, S., Nambu, H., Takekoshi, Y. and Anakura, M. Hyperammonemia due to a mutant enzyme of ornithine transcarbamylase.Pediatrics 48 (1971) 595–600

    PubMed  Google Scholar 

  • Mori, M., Miura, S., Tatibana, M. and Cohen, P. P. Processing of a putative precursor of rat liver ornithine transcarbamylase, a mitochondrial matrix enzyme.J. Biochem. 88 (1980a) 1829–1836

    PubMed  Google Scholar 

  • Mori, M., Miura, S., Tatibana, M. and Cohen, P. P. Cell-free translation of cabamyl phosphate synthetase I and ornithine transcarbamylase messenger RNAs of rat liver. Effect of dietary protein and fasting on translatable mRNA levels.J. Biol. Chem. 256 (1981) 4127–4132

    PubMed  Google Scholar 

  • Mori, M., Morris, S. M. and Cohen, P. P. Cell-free translation and thyroxine induction of carbamyl phosphate synthetase I messenger RNA in tadpole liver.Proc. Natl. Acad. Sci. USA 76 (1979) 3179–3183

    PubMed  Google Scholar 

  • Mori, M., Uchiyama, C., Miura, S., Tatibana, M. and Nagayama, E. Ornithine carbamyltransferase deficiency: coexistence of active and inactive forms of enzyme.Clin. Chim. Acta 104 (1980b) 291–299

    PubMed  Google Scholar 

  • Morita, T., Miura, S., Mori, M. and Tatibana, M. Transport of the precursor for rat-liver ornithine carbamyltransferase.Eur. J. Biochem. 122 (1982) 501–509

    PubMed  Google Scholar 

  • Pelham, H. R. B. and Jackson, R. J. An efficient mRNA-dependent translation system from reticulocyte lysates.Eur. J. Biochem. 68 (1976) 247–256

    Google Scholar 

  • Pierson, D. L., Cox, S. L. and Gilbert, B. E. Human ornithine transcarbamylase. Purification and characterization of the enzyme from normal liver and the liver of a Reye syndrome patient.J. Biol. Chem. 252 (1977) 6464–6469

    PubMed  Google Scholar 

  • Rieder, R. F., Wolf, D. J., Clegg, J. B. and Lee, S. L. Rapid postsynthetic destruction of unstable haemoglobin Bushwick.Nature 254 (1975) 725–727

    PubMed  Google Scholar 

  • Saheki, T., Ueda, A., Hosoya, M., Kusumi, K., Takada, S., Tsuda, M. and Katsunuma, T. Qualitative and quantitative abnormalities of argininosuccinate synthetase in citrullinemia.Clin. Chim. Acta 109 (1981) 325–335

    PubMed  Google Scholar 

  • Schimke, R. T. Adaptive characteristics of urea cycle enzymes in the rat.J. Biol. Chem. 237 (1962) 459–468

    PubMed  Google Scholar 

  • Schimke, R. T. Enzymes of arginine metabolism in mammalian cell culture. I. Repression of argininosuccinate synthetase and argininosuccinase.J. Biol. Chem. 239 (1964) 136–145

    PubMed  Google Scholar 

  • Shih, V. E. Hereditary urea cycle disorders. In Grisolia, S., Baguena, R. and Mayor, F. (eds.) The Urea Cycle, (1976) pp. 367–414

  • Stoll, C., Bieth, R., Breyfus, J., Flori, E., Lutz, P. and Levy, J.-M. Une nouvelle famille avec mutation du gene de structure de l'ornithine carbamyltransferase humaine.Arch. Fr. Pediatr. 35 (1978) 512–518

    PubMed  Google Scholar 

  • Towbin, H., Staehlin, T. and Gordon, J. Eletrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications.Proc. Natl. Acad. Sci. USA 76 (1979) 4350–4354

    PubMed  Google Scholar 

  • Van der Heiden, C., Desplanque, J. and Bakker, H. D. Some kinetic properties of liver ornithine carbamyltransferase (OTC).Clin. Chim. Acta 80 (1977) 519–527

    PubMed  Google Scholar 

  • Walser, M. Urea cycle disorders and other hereditary hyperammonemic syndromes. In Stanbury, J. B., Wyngaarden, J. B., Goldstein, J. L. and Brown, M. S. (eds.)The Metabolic Basis of Inherited Disease, 5th edn, McGraw-Hill, New York, 1983, p. 402–438

    Google Scholar 

  • Yamagami, M., Hirayama, Y., Yamaguchi, K., Takita, S., Fukuyama, Y., Tatibana, M. and Mori, M. Congenital hyperammonemia due to partial ornithine transcarbamylase deficiency.Nou To Hatsuiku 8 (1976) 185–197 in Japanese

    Google Scholar 

  • Yokoi, T., Honke, K., Funabashi, T., Hayashi, R., Suzuki, Y., Taniguchi, N., Hosoya, M. and Saheki, T. Partial ornithine transcarbamylase deficiency simulating Reye syndrome.J. Pediatr. 99 (1981) 929–931

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saheki, T., Imamura, Y., Inoue, I. et al. Molecular basis of ornithine transcarbamylase deficiency lacking enzyme protein. J Inherit Metab Dis 7, 2–8 (1984). https://doi.org/10.1007/BF01805609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01805609

Keywords

Navigation