Skip to main content
Log in

Inhibition of fibroblast growth factors

  • Tumor-host interactions
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The potential roles of members of the fibroblast growth factor family in tumor angiogenesis and metastasis and their mechanisms of release from cells are discussed. Furthermore, we review methods of therapeutic targeting of these polypeptides. In particular, we focus on the possibility to inhibit fibroblast growth factors with drugs that mimic heparin-like cellular binding sites and thus can interfere with growth factor receptor recognition. In addition, we discuss antibodies, antisense oligodeoxynucleotides, and ribozymes as approaches to inhibit production and activity of these growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aFGF:

acidic fibroblast growth factor (=FGF-1)

bFGF:

basic FGF (=FGF-2)

HBGF:

heparin-binding growth factor

HGF:

hepatocyte growth factor

HSPG:

heparansulfate proteoglycan

PTN:

pleiotrophin

TGF:

transforming growth factor

VEGF:

vascular endothelial cell growth factor

References

  1. Folkman J, Klagsbrun M: Angiogenic factors. Science 235:442–447, 1987

    PubMed  Google Scholar 

  2. Cross M, Dexter TM: Growth factors in development, transformation, and tumorigenesis. Cell 64:271–280, 1991

    PubMed  Google Scholar 

  3. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64:327–336, 1991

    PubMed  Google Scholar 

  4. Folkman J: How is blood vessel growth regulated in normal and neoplastic tissue? — G.H.A. Clowes Memorial Award Lecture. Cancer Res 46:467–473, 1986

    PubMed  Google Scholar 

  5. Fidler IF, Ellis LM: The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188, 1994

    PubMed  Google Scholar 

  6. Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N Engl J Med 324:1–8, 1991

    PubMed  Google Scholar 

  7. Horak ER, Leek R, Klenk N, Lejeunde S, Smith K, Stuart N, Greenall M, Stepniewska K, Harris AL: Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340: 1120–1124, 1992

    PubMed  Google Scholar 

  8. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML: Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23:755–761, 1992

    PubMed  Google Scholar 

  9. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G: Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887, 1992

    PubMed  Google Scholar 

  10. Toi M, Kashitani J, Tominaga T: Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 55:371–374, 1993

    PubMed  Google Scholar 

  11. Macchiarini P, Fontaini G, Jardini MJ, Squartini F, Angeletti CA: Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet 340: 145–146, 1992

    PubMed  Google Scholar 

  12. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143: 401–409, 1993

    PubMed  Google Scholar 

  13. Gasparini G, Weidner N, Maluta S, Pozza F, Boracchi P, Mezzetti M, Testolin A, Bevilacqua P: Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 55:739–744, 1993

    PubMed  Google Scholar 

  14. Folkman J, Shing Y: Angiogenesis. J Biol Chem 267:10931–10934, 1992

    PubMed  Google Scholar 

  15. Burgess WH, Maciag T: The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58:575–606, 1989

    PubMed  Google Scholar 

  16. Mason IJ: The ins and outs of fibroblast growth factors. Cell 78:547–552, 1994

    PubMed  Google Scholar 

  17. Lobb R, Fett J: Purification of two distinct growth factors from bovine neural tissue by heparin affinity chromatography. Biochemistry 23:6295–6299, 1984

    PubMed  Google Scholar 

  18. Maciag T, Tevie M, Friesel R: Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science 225:932–935, 1984

    PubMed  Google Scholar 

  19. Risau W, Gautschi-Sova P, Böhlen P: Endothelial cell growth factors in embryonic and adult chick brain are related to human acidic fibroblast growth factor. EMBO J 7:959–962, 1988

    PubMed  Google Scholar 

  20. Risau W: Developing brain produces an angiogenesis factor. Proc Natl Acad Sci USA 83:3855–3859, 1986

    PubMed  Google Scholar 

  21. Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Böhlen P, Guillemin R: Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the aminoterminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 82:6507–6511, 1985

    PubMed  Google Scholar 

  22. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M: Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor. Science 223:1296–1299, 1984

    PubMed  Google Scholar 

  23. Moscatelli D, Presta M, Joseph-Silverstein J, Rifkin DB: Both normal and tumor cells produce basic fibroblast growth factor. J Cell Physiol 129:273–276, 1986

    PubMed  Google Scholar 

  24. Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M: Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 84:2292–2296, 1987

    Google Scholar 

  25. Rogelj S, Klagsbrun M, Atzmon R, Kurokawa M, Haimovitz A, Fuks Z, Vlodavsky I: Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC12 cells. J Cell Biol 109:823–831, 1989

    PubMed  Google Scholar 

  26. Saksela O, Moscatelli D, Sommer A, Rifkin DB: Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 107:743–751, 1988

    PubMed  Google Scholar 

  27. Kiefer MC, Stephans JC, Crawford K, Okino K, Barr PJ: Ligand-affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc Natl Acad Sci USA 87: 6985–6989, 1990

    PubMed  Google Scholar 

  28. Patterson SL, Grady MS, Bothwell M: Nerve growth factor and a fibroblast growth factor-like neurotrophic activity in cerebrospinal fluid of brain injured human patients. Brain Res 605:43–49, 1993

    PubMed  Google Scholar 

  29. Vlodavsky I, Eldor A, Bar-Ner M, Fridman R, Cohen IR, Klagsbrun M: Heparan sulfate degradation in tumor cell invasion and angiogenesis. Adv Exp Med Biol 233:201–210, 1988

    PubMed  Google Scholar 

  30. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I: Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743, 1989

    PubMed  Google Scholar 

  31. Moscatelli D: Basic fibroblast growth factor (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. Implications for mechanisms of bFGF release from pericellular matrix. J Biol Chem 267: 25803–25809, 1992

    PubMed  Google Scholar 

  32. Vlodavsky I, Bashkin P, Ishai-Michaeli R, Chajek-Shaul T, Bar-Shavit R, Haimovitz-Friedman A, Klagsbrun M, Fuks Z: Sequestration and release of basic fibroblast growth factor. Ann N Y Acad Sci 638:207–220, 1991

    PubMed  Google Scholar 

  33. Wu D, Kan M, Sato GH, Okamoto T, Sato JD: Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. J Biol Chem 266:16778–16785, 1991

    PubMed  Google Scholar 

  34. Czubayko F, Smith RV, Chung HC, Wellstein A: A secreted binding protein can activate non-secreted FGF in tumors. J Biol Chem 269:28243–28248, 1994

    PubMed  Google Scholar 

  35. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL: An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 259: 1918–1921, 1993

    PubMed  Google Scholar 

  36. Folkman J, Shing Y: Control of angiogenesis by heparin and other sulfated polysaccharides. Adv Exp Med Biol 313:355–364, 1992

    PubMed  Google Scholar 

  37. Myers CE, La Rocca RV, Cooper MR, Danesi R, Jamis-Dow CA, Stein CA, Linehan WM: Role of suramin in cancer biology and treatment.In: Broder S (ed) Molecular Foundations of Oncology. Williams & Wilkins, Baltimore, 1991, pp 419–431

    Google Scholar 

  38. Zugmaier G, Lippman ME, Wellstein A: Inhibition by pentosan polysulfate (PPS) of heparin-binding growth factors released from tumor cells and blockade by PPS of tumor growth in animals. J Natl Cancer Inst 84:1716–1724, 1992

    PubMed  Google Scholar 

  39. Wellstein A, Zugmaier G, Califano JA III, Kern F, Paik S, Lippman ME: Tumor growth dependent on Kaposi's sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate. J Natl Cancer Inst 83:716–720, 1991

    PubMed  Google Scholar 

  40. Parker BW, Swain SM, Zugmaier G, Lippman ME, Wellstein A: Detectable inhibition of heparin-binding growth factor activity in sera from patients treated with pentosan polysulfate. J Natl Cancer Inst 85: 1068–1073, 1993

    PubMed  Google Scholar 

  41. Sizmann N, Fang WJ, Chung HC, Rodeck U, Herlyn M, Wellstein A: Pleiotrophin in melanoma metastasis and inhibition by pentosanpolysulfate. Int J Cancer, in press

  42. Swain S, Wellstein A, Parker B, Lippman M, Steakley C, DeLap R: Heparin-binding growth factor blockade with pentosan polysulfate. Ann N Y Acad Sci 698: 63–70, 1993

    PubMed  Google Scholar 

  43. Teicher BA, Sotomayor EA, Huang ZD: Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52:6702–6704, 1992

    PubMed  Google Scholar 

  44. Ishihara M, Tyrrell DJ, Stauber GB, Brown S, Cousens LS, Stack RJ: Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J Biol Chem 268: 4675–4683, 1993

    PubMed  Google Scholar 

  45. Tyrrell DJ, Ishihara M, Rao N, Horne A, Kiefer MC, Stauber GB, Lam LH, Stack RJ: Structure and biological activities of a heparin-derived hexasaccharide with high affinity for basic fibroblast growth factor. J Biol Chem 268:4684–4689, 1993

    PubMed  Google Scholar 

  46. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G: Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 8:95–114, 1987

    PubMed  Google Scholar 

  47. Baird A, Klagsbrun M: The fibroblast growth factor family. Cancer Cells 3:239–243, 1991

    PubMed  Google Scholar 

  48. Schreiber AB, Winkler ME, Derynck R: Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232: 1250–1253, 1986

    PubMed  Google Scholar 

  49. Weidner KM, Hartmann G, Sachs M, Birchmeier W: Properties and functions of scatter factor/hepatocyte growth factor and its receptor c-Met. Am J Respir Cell Mol Biol 8:229–237, 1993

    PubMed  Google Scholar 

  50. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844, 1993

    PubMed  Google Scholar 

  51. Fang WJ, Hartmann N, Chow D, Riegel AT, Wellstein A: Pleiotrophin stimulates fibroblasts, endothelial and epithelial cells, and is expressed in human cancer. J Biol Chem 267:25889–25897, 1992

    PubMed  Google Scholar 

  52. Toi M, Harris AL, Bicknell R: Interleukin-4 is a potent mitogen for capillary endothelium. Biochem Biophys Res Commun 174:1287–1293, 1991

    PubMed  Google Scholar 

  53. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K: Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J Biol Chem 269:6271–6274, 1994

    PubMed  Google Scholar 

  54. Myoken Y, Kan M, Sato GH, McKeehan WL, Sato JD: Bifunctional effects of transforming growth factor-beta (TGF-beta) on endothelial cell growth correlate with phenotypes of TGF-beta binding sites. Exp Cell Res 191:299–304, 1990

    PubMed  Google Scholar 

  55. Denekamp J: Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 66:181–196, 1993

    PubMed  Google Scholar 

  56. Hori A, Sasada R, Matsutani E, Naito K, Sakura Y, Fujita T, Kozai Y: Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against basic fibroblast growth factor. Cancer Res 51:6180–6184, 1991

    PubMed  Google Scholar 

  57. Matsuzaki K, Yoshitake Y, Matuo Y, Sasaki H, Nishikawa K: Monoclonal antibodies against heparin-binding growth factor II/basic fibroblast growth factor that block its biological activity: invalidity of the antibodies for tumor angiogenesis. Proc Natl Acad Sci USA 86:9911–9915, 1989

    PubMed  Google Scholar 

  58. Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J: Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 86:356–360, 1994

    PubMed  Google Scholar 

  59. Wellstein A: Why monitor angiogenesis factors in the urine of patients? [editorial]. J Natl Cancer Inst 86: 328–329, 1994

    PubMed  Google Scholar 

  60. Wagner RW: Gene inhibition using antisense oligodeoxynucleotides. Nature 372:333–335, 1994

    PubMed  Google Scholar 

  61. Becker D, Meier CB, Herlyn M: Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 8:3685–3691, 1989

    PubMed  Google Scholar 

  62. Cech TR: Nobel lecture. Self-splicing and enzymatic activity of an intervening sequence RNA fromTetrahymena. Biosci Rep 10: 239–261, 1990

    PubMed  Google Scholar 

  63. Symons RH: Small catalytic RNAs. Annu Rev Biochem 61:641–671, 1992

    PubMed  Google Scholar 

  64. Pyle AM: Ribozymes: a distinct class of metalloenzymes. Science 261:709–714, 1993

    PubMed  Google Scholar 

  65. Czubayko F, Riegel AT, Wellstein A: Ribozymetargeting elucidates a direct role of pleiotrophin in tumor growth. J Biol Chem 269:21358–21363, 1994

    PubMed  Google Scholar 

  66. Uhlenbeck OC: A small catalytic oligoribonucleotide. Nature 328:596–600, 1987

    PubMed  Google Scholar 

  67. Haseloff J, Gerlach WL: Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334:585–591, 1988

    PubMed  Google Scholar 

  68. Wellstein A, Lupu R, Zugmaier G, Flamm SL, Cheville AL, Delli Bovi P, Basilico C, Lippman ME, Kern FG: Autocrine growth stimulation by secreted Kaposi's fibroblast growth factor but not by endogenous basic fibroblast growth factor. Cell Growth Differ 1:63–71, 1990

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wellstein, A., Czubayko, F. Inhibition of fibroblast growth factors. Breast Cancer Res Tr 38, 109–119 (1996). https://doi.org/10.1007/BF01803789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01803789

Key words

Navigation