Skip to main content
Log in

Decreased transport of ornithine across the inner mitochondrial membrane as a cause of hyperornithinaemia

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Hyperornithinaemia due to a transport defect of ornithine across the inner mitochondrial membrane was demonstrated in three patients by measuring ornithine uptake by fibroblast mitochondria. Particulate compartments and soluble cytoplasm of fibroblasts were separated by a slight modification of the digitonin method of Zuurendonk and Tager. Patient's fibroblast pellet fraction contained significantly less radioactivity than control fibroblast pellet fraction after incubation of fibroblasts with [14C]-ornithine. Since neither of the patients was deficient in ornithine-δ-oxoacid aminotransferase, we concluded that in these hyperornithinaemia patients a defect exists for transport of ornithine across the inner mitochondrial membrane. The exact nature of this transport defect remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson, E. L., Schmidt, S. Y. and Rabin, A. R. Amino acids in hereditary retinal disease. I. Plasma ornithine, lysine and taurine.Br. J. Ophthalmol. 60 (1976) 142–147

    Google Scholar 

  • Berger, R. and Hommes, F. A. Regulation of pyruvate oxidation in mitochondria isolated from fetal and adult rat liver.Biochim. Biophys. Acta 314 (1973) 1–7

    Google Scholar 

  • Bickel, H., Feist, D., Müller, H. and Quadbeck, G. Ornithinämie, eine weitere Aminosäurestoffwechselstörung mit Hirnschadigung.Dtsch. Med. Wochenschr. 47 (1968) 2247–2251

    Google Scholar 

  • Bradford, N. M. and McGivan, J. D. Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria.FEBS Lett 113 (1980) 294–298

    Google Scholar 

  • Brdiczka, O., Pette, D., Brunner, G. and Miller, F. Kompartmentierte Vertielung von Enzyme in Rattenlebermitochondriae.Eur. J. Biochem. 5 (1968) 294–304

    Google Scholar 

  • Chance, B. and Williams, G. R. The respiratory chain and oxidative phosphorylation.Adv. Enzymol. 17 (1956) 65–134

    Google Scholar 

  • Criss, W. E. Rat liver adenosine triphosphate: adenosine monophosphate phosphotransferase activity. II. Subcellular localization of adenylate kinase isoenzymes.J. Biol. Chem. 245 (1970) 6352–6356

    Google Scholar 

  • Da Foncesca-Wallkin, F. Bedeutung von Wasserstoffionen konzentration und ADP-Zusatz bei der Ammoniak-bestimmung mit Glutamatdehydrogenase.Z. Klin. Chem. Klin. Biochem. 4 (1973) 421–425

    Google Scholar 

  • Danner, D. J., Wheeler, F. B., Lemmon, S. K. and Elsas, L. J.In vivo andin vitro response of human branched chain α-ketoacid dehydrogenase to thiamine and thiamine pyrophosphate.Pediatr. Res. 12 (1978) 235–238

    Google Scholar 

  • De Vos, M. A., Wilmink, C. W. and Hommes, F. A. Development of some mitochondrial oxidase systems of rat liver.Biol. Neonat. 13 (1968) 83–89

    Google Scholar 

  • Estabrook, R. W. and Holowinsky, A. Studies on the content and organization of the respiratory enzymes of mitochondria.J. Biophys. Biochem. Cytol. 9 (1961) 19–28

    Google Scholar 

  • Fell, U., Pollitt, R. J., Sampson, G. A. and Wright, T. Ornithinemia, hyperammonemia and homocitrullinuria.Am. J. Dis. Child. 127 (1974) 752–756

    Google Scholar 

  • Gamble, J. G. and Lehninger, A. L. Transport of ornithine and citrulline across the mitochondrial membrane.J. Biol. Chem. 248 (1973) 610–618

    Google Scholar 

  • Gatfield, P. D., Taller, E., Wolfe, D. M. and Haust, M. D. Hyperornithinemia, hyperammonemia and homocitrullinuria associated with decreased carbamoyl phosphate synthetase I activity.Pediatr. Res. 9 (1975) 488–497

    Google Scholar 

  • Gordon, B. A., Gatfield, P. D. and Wolfe, D. M. Studies of the metabolic defect in patients with hyperammonemia, hyperornithinemia and homocitrullinuria.Clin. Res. 24 (1976) 668A

    Google Scholar 

  • Hommes, F. A., Ho, C. K., Gordon, B., Coryell, M. E. and Roesel, R. A. Decreased transport of ornithine across the inner mitochondrial membrane as a cause of hyperornithinemia. InProceedings of the International Symposium on Inborn Errors of Metabolism, Interlaken, MTP Press, Lancaster, 1980, p. 28

    Google Scholar 

  • Klingenberg, M. and Phaff, E. Structural and functional compartmentation in mitochondria. In Tager, J. M., Papa, S., Quagliariello, E. and Slater, E. C. (eds.)Regulation of Metabolic Processes in Mitochondria, B.B.A. Library, 7, Elsevier, Amsterdam, 1966, pp. 180–201

    Google Scholar 

  • Kornberg, A. Lactic dehydrogenase of muscle.Meth. Enzymol. 1 (1955) 441–443

    Google Scholar 

  • Krebs, H. A., Cornell, N. W., Lund, P. and Hems, P. Isolated liver cells as experimental material. In Lundquist, F. and Tygstrup, N. (eds.)Regulation of Hepatic Metabolism, Munksgaard, Copenhagen, 1974, pp. 726–750

    Google Scholar 

  • Lowry, O. H., Rosebrough, N., Farr, L. A. and Randall, R. J. Protein measurements with the Folin phenol reagent.J. Biol. Chem. 193 (1951) 265–275

    Google Scholar 

  • Mackall, J., Meredith, M. and Lane, D. M. A mild procedure for the rapid release of cytoplasmic enzymes from cultured animal cells.Anal. Biochem. 95 (1978) 270–274

    Google Scholar 

  • McGivan, J. D., Bradford, N. M. and Beavis, A. D. Factors influencing the activity of ornithine amino transferase in isolated rat liver mitochondria.Biochem. J. 162 (1977) 147–156

    Google Scholar 

  • Marshall, M. and Cohen, P. P. Ornithine transcarbamylase fromStreptococcus faecalis and bovine liver. II. Multiple binding sites for carbamyl-P and L-norvaline. Correlation with steady state kinetics.J. Biol. Chem. 247 (1972) 1654–1664

    Google Scholar 

  • Miller, R. L., Elsas, L. J. and Priest, R. E. Ascorbate action in normal and mutant human lysyl hydroxylases from cultured dermal fibroblasts.J. Invest. Dermatol. 72 (1979) 241–247

    Google Scholar 

  • Murphy, B. J. and Brosnan, M. E. Subcellular localization of ornithine decarboxylase in liver of control and growth hormone treated rats.Biochem. J. 157 (1976) 33–39

    Google Scholar 

  • O'Donnell, J. J., Sandeman, R. P. and Martin, S. R. Deficientl-ornithine: 2-oxo-acid amino transferase activity in cultured fibroblasts from a patient with gyrate atrophy of the retina.Biochem. Biophys. Res. Commun. 79 (1977) 396–399

    Google Scholar 

  • Phang, J. M., Downing, S. J. and Valle, D. A radioisotopic assay for ornithine-δ-transaminase.Anal. Biochem. 55 (1973) 272–277

    Google Scholar 

  • Sattocasa, G. L., Kuylenstierna, B., Ernster, L. and Bergstrand, A. Separation and some enzymatic properties of the inner and outer membranes of rat liver mitochondria.Meth. Enzymol. 10 (1967) 448–463

    Google Scholar 

  • Shih, V. E., Efron, M. L. and Moser, H. W. Hyperornithinemia, hyperammonemia and homocitrullinuria. A new disorder of amino acid metabolism associated with myoclonic seizures and mental retardation.Am. J. Dis. Child. 177 (1969) 83–92

    Google Scholar 

  • Shih, V. E., Berson, E. L., Mandell, R. and Schmidt, S. Y. Ornithine keto acid transaminase deficiency and gyrate atrophy of the choroid and retina.Am. J. Hum. Genet. 30 (1978) 174–179

    Google Scholar 

  • Simell, O. and Takki, K. Raised plasma ornithine and gyrate atrophy of the choroid and retina.Lancet 1 (1973) 1031–1033

    Google Scholar 

  • Strecker, H. J.l-Glutamic dehydrogenase from liver.Meth. Enzymol. 2 (1955) 220–225

    Google Scholar 

  • Takki, K. and Simell, O. Genetic aspects in gyrate atrophy of the choroid and retina with hyperornithinemia.Br. J. Ophthalmol. 58 (1974) 907–916

    Google Scholar 

  • Trijbels, J. M. F., Sengers, R. C. A., Bakkeren, J. A. J. M., De Kort, A. F. M. and Deutman, A. T.l-Ornithine ketoacid transaminase deficiency in cultured fibroblasts of a patient with hyperornithinemia and gyrate atrophy of the choroid and retina.Clin. Chim. Acta 79 (1977) 371–377

    Google Scholar 

  • Valle, D., Brusilow, S. W., Walser, M. and Kaiser-Kupfer, M. J. Hyperammonemia in gyrate atrophy of choroid and retina.Pediatr. Res. 12 (1975) 513

    Google Scholar 

  • Valle, D., Walser, M., Brusilow, S. W. and Kaiser-Kupfer, M. Gyrate atrophy of the choroid and retina. Amino acid metabolism and corrections of hyperornithinemia with an argine-deficient diet.J. Clin,. Invest. 65 (1980) 371–378

    Google Scholar 

  • Van Anken, H. C. and Schiphorst, M. C. A kinetic determination of ammonia in plasma.Clin. Chim. Acta 56 (1974) 151–157

    Google Scholar 

  • Van Lelyveld, Ph. E. and Hommes, F. A. Adenine nucleotides in fetal rat liver cells: compartmentation and variations with age.Biochem. J. 174 (1978) 527–533

    Google Scholar 

  • Wright, T. and Pollitt, R. Psychomotor retardation, epileptic and stuporous attacks, irritability and ataxia associated with ammonia intoxication, high blood ornithine levels and increased homocitrulline in the urine.Proc. R. Soc. Med. 66 (1973) 221–226

    Google Scholar 

  • Yatsiv, S., Statten, M. and Merin, S. Metabolic studies in two families with hyperornithinemia and gyrate atrophy of choroid and retina.J. Lab. Clin. Med. 93 (1979) 749–757

    Google Scholar 

  • Zuurendonk, P. and Tager, J. M. Rapid separation of particulate compounds and soluble cytoplasm of isolated rat liver cells.Biochim. Biophys. Acta 333 (1974) 393–399

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hommes, F.A., Ho, C.K., Roesel, R.A. et al. Decreased transport of ornithine across the inner mitochondrial membrane as a cause of hyperornithinaemia. J Inherit Metab Dis 5, 41–47 (1982). https://doi.org/10.1007/BF01799753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01799753

Keywords

Navigation