Skip to main content
Log in

Chemial evolution

XVIII. Synthesis of Pyrimidines from Guanidine and Cyanoacetaldehyde

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Cyanoacetaldehyde condenses with guanidine in dilute aqueous solution to form 2,4-diaminopyrimidine which in turn is hydrolyzed to cytosine and uracil. The concentration of reagents required for the synthesis of 2,4-diaminopyrimidine is quite low, and cyanoacetadehyde is expected to have been present on the primitive earth since it is formed by the hydrolysis of cyanoacetylene. The stability of cyanoacetaldehyde and its aldol dimer to hydrolysis is 103 times that of cyanoacetylene. The half life for guanidine hydrolysis is 105–108 years at pH 9. The prebiotic synthesis of pyrimidines from cyanoacetaldehyde and guanidine is preferred over the previously proposed route from cyanoacetylene and cyanate because of the greater stability of the reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blair, J.S., Braham, J.M.: Ind. Eng. Chem.16, 848–852 (1924)

    Google Scholar 

  • Eloranta, J.: Suomen Kemistilehti33B, 193–196 (1960)

    Google Scholar 

  • Eloranta, J.: Suomen Kemistilehti34B, 107–110 (1961)

    Google Scholar 

  • Fanshawe, W.J., Bauer, V.J., Safir, S.R.: J. Org. Chem.30, 1278–1279 (1965)

    Google Scholar 

  • Ferris, J.P.: Sci.161, 53–54 (1968)

    Google Scholar 

  • Ferris, J.P., Antonucci, F. R.: J. Amer. Chem. Soc.96, 2014 (1974)

    Google Scholar 

  • Ferris, J.P., Goldstein, G., Beaulieu, D.J.: J. Amer. Chem. Soc.92, 6598–6603 (1970)

    Google Scholar 

  • Ferris, J.P., Sanchez, R.A., Orgel, L.E.: J. Mol. Biol.33, 693–704 (1968)

    Google Scholar 

  • Hall, N.F., Sprinkle, M.R.: J. Amer. Chem. Soc.54, 3469–3485 (1932)

    Google Scholar 

  • Labadie, M., Jensen, R., Neuzil, E.: Biochim. Biophys. Acta165, 525–533 (1968)

    Google Scholar 

  • Lohrmann, R.: J. Mol. Evol.1, 263–269 (1972)

    Google Scholar 

  • Lowe, C.U., Rees, M.W., Markham, R.: Nature199, 219–222 (1963)

    Google Scholar 

  • Roth, B., Hichings, G.W.: J. Org. Chem.26, 2770–2778 (1961)

    Google Scholar 

  • Royals, E.E.: Advanced organic chemistry, p. 834. Englewood Cliffs, N.J.: Prentice-Hall 1954

    Google Scholar 

  • Sanchez, R.A., Ferris, J.P., Orgel, L.E.: Sci.154, 784–785 (1966)

    Google Scholar 

  • Turner, B.E.: Astrophys. J. (Letters)163, L35-L39 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For the previous paper in this series see Ferriset al. (1974).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, J.P., Zamek, O.S., Altbuch, A.M. et al. Chemial evolution. J Mol Evol 3, 301–309 (1974). https://doi.org/10.1007/BF01796045

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01796045

Keywords

Navigation