Skip to main content
Log in

Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling

  • Review
  • Published:
Bioscience Reports

Abstract

Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a “mechanical coupling” mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T−) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airey, J. A., Beck, C. F., Murakami, K., Tanksley, S. J., Deerinck, T. J., Ellisman, M. H. and Sutko, J. L. (1990) Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle.J. Biol. Chem.,265:14187–14194.

    PubMed  Google Scholar 

  • Anderson, K., Cohn, A. H. and Meissner, G. (1994) High-affinity [3H]PN200-110 and [3H]ryanodine binding to rabbit and frog skeletal muscle.Am. J. Physiol,266:C462-C466.

    PubMed  Google Scholar 

  • Anderson, K. and Meissner, G. (1995) T-tubule depolarization-induced SR Ca2+ release is controlled by dihydropyridine receptor- and Ca2+-dependent mechanisms in cell homogenates from rabbit skeletal muscle.J. Gen Physiol,105:363–383.

    PubMed  Google Scholar 

  • Beam, K. G., Knudson, C. M. and Powell, J. A. (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells.Nature,320:168–170.

    Google Scholar 

  • Block, B. A., Imagawa, T., Campbell, K. P. and Franzini Armstrong, C. (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.J. Cell Biol.,107:2587–2600.

    PubMed  Google Scholar 

  • Brandt, N. R., Casewell, A. H., Brunschwig, J. P., Kang, J. J., Antoniu, B. and Ikemoto, N. (1992) Effects of anti-triadin antibody on Ca2+ release from sarcoplasmic reticulum.FEBS Lett.,299:57–59.

    PubMed  Google Scholar 

  • Brandt, N. R., Caswell, A. H., Carl, S. A., Ferguson, D. G., Brandt, T., Brunschwig, J. P. and Bassett, A. L. (1993) Detection and localization of triadin in rat ventricular muscle.J. Membr. Biol.,131:219–228.

    PubMed  Google Scholar 

  • Caswell, A. H., and Corbett, A. M. (1985) Interaction of glyceraldehyde-3-phosphate dehydrogenase with isolated microsomal subfractions of skeletal muscle.J. Biol. Chem.,260:6892–6898.

    PubMed  Google Scholar 

  • Caswell, A. H., Brandt, N. R., Brunschwig, J. P. and Purkerson, S. (1991) Localization and partial characterization of the oligomeric disulfide-linked molecular weight 95,000 protein (triadin) which binds the ryanodine and dihydropyridine receptors in skeletal muscle triadic vesicles.Biochemistry,30:7507–7513.

    PubMed  Google Scholar 

  • Catterall, W. A. (1995) Structure and function of voltage-gated ion channels.Annu. Rev. Biochem.,64:493–531.

    PubMed  Google Scholar 

  • Chang, C. F., Gutierrez, L. M., Mundina Weilenmann, C. and Hosey, M. M. (1991) Dihydropyridine-sensitive calcium channels from skeletal muscle. II. Functional effects of differential phosphorylation of channel subunits.J. Biol. Chem.,266:16395–16400.

    PubMed  Google Scholar 

  • DeFelice, L. J. (1993) Molecular and biophysical view of the Ca channel: a hypothesis regarding oligomeric structure, channel clustering, and macroscopic current.J. Membr. Biol.,133:191–202.

    PubMed  Google Scholar 

  • DeJongh, K. S., Warner, C., Colvin, A. A. and Catterall, W. A. (1991) Characterization of the two size forms of the α1 subunit of skeletal muscle L-type calcium channels.Proc. Nad. Acad. Sci. USA,88:10778–10782.

    Google Scholar 

  • DeWaard, M., Witcher, D. R., Pragnell, M., Liu, H., and Campbell, K. P. (1995) Properties of the α1-β anchoring site in voltage-dependent Ca2+ channels.J. Biol. Chem.,270:12056–12064.

    PubMed  Google Scholar 

  • Fan, H., Brandt, N. R. and Caswell, A. H., (1995) Disulfide bonds, glycosilation sites and membrane topology of skeletal muscle triadin.Biophys. J.,68:A416.

    Google Scholar 

  • Franzini-Armstrong, C. and Jorgensen, A. O. (1994) Structure and development of E-C coupling units in skeletal muscle.Annu. Rev. Physiol,56:509–534.

    PubMed  Google Scholar 

  • Gregg, R. G., Messing, A., Moss, R., Behan, M., Coronado, R., Strube, C. and Powers, P. A. (1995) The beta subunit of the L-type VDCC (CACNLB1) is essential for excitation-contraction coupling.Biophys. J.,68:A372.

    Google Scholar 

  • Grunwald, R. and Meissner, G. (1995) Lumenal sites and C terminus accessibility of the skeletal muscle calcium release channel (ryanodine receptor).J. Biol. Chem.,270:11338–11347.

    PubMed  Google Scholar 

  • Guo, W. and Campbell, K. P. (1995) Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum.J. Biol. Chem.,270:9027–9030.

    PubMed  Google Scholar 

  • Hakamata, Y., Nakai, J., Takeshima, H. and Imoto, K. (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain.FEBS lett.,312:229–235.

    PubMed  Google Scholar 

  • Ivanenko, A., McKemy, D. D., Kenyon, J. L., Airey, J. A. and Sutko, J. L. (1995) Embryonic chicken skeletal muscle cells fail to develop normal excitation-contraction coupling in the absence of the α ryanodine receptor. Implications for a two-ryanodine receptor system.J. Biol. Chem.,270:4220–4223.

    PubMed  Google Scholar 

  • Kim, K. C., Caswell, A. H., Talvenheimo, J. A. and Brandt, N. R. (1990) Isolation of a terminal cisterna protein which may link the dihydropyridine receptor to the junctional foot protein in skeletal muscle.Biochemistry,29:9281–9289.

    PubMed  Google Scholar 

  • Knudson, C. M., Stang, K. K., Moomaw, C. R., Slaughter, C. A. and Campbell, K. P. (1993) Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin).J. Biol. Chem.,268:12646–12654.

    PubMed  Google Scholar 

  • Lai, Y., Seagar, M. J., Takahashi, M. and Catterall, W. A. (1990) Cyclic AMP-dependent phosphorylation of two size forms of al subunits of L-type calcium channels in rat skeletal muscle cells.J. Biol. Chem.,265:20839–20848.

    PubMed  Google Scholar 

  • Lai, F. A., Liu, Q. Y., Xu, L., El-Hashem, A., Kramarcy, N. R., Sealock, R. and Meissner, G. (1992) Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle.Am. J. Physiol.,263:C365-C372.

    PubMed  Google Scholar 

  • Ledbetter, M. W., Freiner, J. K., Louis, C. F. and Mickelson, J. R. (1994) Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction.J. Biol. Chem.,269:31544–31551.

    PubMed  Google Scholar 

  • Lewis Carl, S., Felix, K., Caswell, A. H., Brandt, N. R., Ball, W. J., Vaghy, P. L., Meissner, G. and Ferguson, D. G. (1995a) Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium.J. Cell. Biol.,129:673–682.

    Google Scholar 

  • Lewis Carl, S., Felix, K., Caswell, A. H., Brandt, N. R., Brunschwig, J.-P., Meissner, G. and Ferguson, D. G. (1995b) Immunolocalization of triadin, DHP receptors, and ryanodine receptors in adult and developing skeletal muscle of rats.Muscle & Nerve,18: (in press).

  • Liu, G. and Pessah, I. N. (1994) Molecular interaction between ryanodine receptor and glycoprotein triadin involves redox cycling of functionally important hyperreactive sulfhydrils.J. Biol. Chem.,269:33028–33034.

    PubMed  Google Scholar 

  • Lu, X., Xu, L. and Meissner, G. (1994) Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor.J. Biol. Chem.,269:6511–6516.

    PubMed  Google Scholar 

  • Lu, X., Xu, L. and Meissner, G. (1995) Phosphorylation of dihydropyridine receptor II-III loop peptide regulates skeletal muscle calcium release channel function. Evidence for an essential role of the β-OH group of Ser687.J. Biol. Chem.,270:18559–18464.

    Google Scholar 

  • Marty, I., Villaz, M., Arlaud, G., Bally, I. and Ronjat, M. (1994a) Transmembrane orientation of the N-terminal and C-terminal ends of the ryanodine receptor in the sarcoplasmic reticulum of rabbit skeletal muscle.Biochem. J.,15:743–749.

    Google Scholar 

  • Marty, I., Robert, M., Villaz, M., Da Jongh, K., Lai, Y., Catterall, W. A. and Ronjat, M. (1994b) Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle.Proc. Natl. Acad. Sci. USA,91:2270–2274.

    PubMed  Google Scholar 

  • Meissner, G. (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogeneous effectors.Annu. Rev. Physiol,56:485–508.

    PubMed  Google Scholar 

  • Mundina-Weilenmann, C., Ma, J., Rios, E. and Hosey, M. M. (1991) Dihydropyridine-sensitive skeletal muscle calcium channels in polarized planar bilayers. 2. Effects of phosphorylation by cAMP-dependent protein kinase.Biophys. J.,60:902–909.

    PubMed  Google Scholar 

  • Nunoki, K., Florio, V. and Catterall, W. A. (1989) Activation of purified calcium channels by stoichiometric protein phosphorylation.Proc. Natl. Acad. Sci. USA,86:6816–6820.

    PubMed  Google Scholar 

  • Ogawa, Y. (1994) Role of ryanodine receptors.Crit Rev. Biochem. Mol. Biol.,29:229–274.

    PubMed  Google Scholar 

  • Oyamada, H., Murayama, T., Takagi, T., Iino, M., Iwabe, N., Miyata, T., Ogawa, Y. and Endo, M. (1994) Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle.J. Biol. Chem.,269:17206–17214.

    PubMed  Google Scholar 

  • Radermacher, M., Rao, V., Grassucci, R., Frank, J., Timerman, A. P., Fleischer, S. and Wagenknecht, T. (1994) Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle.J. Cell. Biol.,127:411–423.

    PubMed  Google Scholar 

  • Rios, E. and Pizarro, G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle.Physiol Rev.,71:849–908.

    PubMed  Google Scholar 

  • Rohrkasten, A., Meyer, H. E., Nastainczyk, W., Sieber, M. and Hofmann, F. (1988) cAMP-dependent protein kinase rapidly phosphorylates serine-687 of the skeletal muscle receptor for calcium channel blockers.J. Biol. Chem.,263:15325–15329.

    PubMed  Google Scholar 

  • Rotman, E. I., Murphy, B. J. and Catterall, W. A. (1995) Sites of selective cAMP-dependent phosphorylation of the L-type calcium channel α1 subunit from intact rabbit skeletal muscle myotubes.J. Biol. Chem.,270:16371–16377.

    PubMed  Google Scholar 

  • Schneider, M. F. (1994) Control of calcium release in functioning skeletal muscle fibers.Annu. Rev. Physiol.,56:463–484.

    PubMed  Google Scholar 

  • Serysheva, I. I., Orlova, E. V., Chiu, W., Sherman, M. B., Hamilton, S. L. and van Heel, M. (1995a) Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel.Nat. Struct. Biol.,2:18–24.

    PubMed  Google Scholar 

  • Serysheva, I. I., Orlova, E. V., Sherman, M. B., Heel, M. V., Chiu, W. and Hamilton, S. L. (1995b) 3D structure of the skeletal muscle Ca2+ release channel in its open and closed states by electron cryomicroscopy and angular reconstruction.Biophys. J.,68:A128.

    Google Scholar 

  • Sun, X. H., Protasi, F., Takahashi, M., Takeshima, H., Ferguson, D. G. and Franzini Armstrong, C., (1995) Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle.J. Cell. Biol.,129:659–671.

    PubMed  Google Scholar 

  • Takekura, H., Nishi, M., Noda, T., Takeshima, H. and Franzini Armstrong, C. (1995) Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor.Proc. Natl. Acad. Sci. USA,92:3381–3385.

    PubMed  Google Scholar 

  • Takeshima, H., Yamazawa, T., Ikemoto, T., Takekura, H., Nishi, M., Noda, T. and Iino, M. (1995) Ca2+-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor.EMBO J.,14:2999–3006.

    PubMed  Google Scholar 

  • Tanabe, T., Beam, K. G., Powell, J. A. and Numa, S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA.Nature,336:134–139.

    PubMed  Google Scholar 

  • Tanabe, T., Mikami, A., Numa, S. and Beam, K. G. (1990a) Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA.Nature,344:451–453.

    PubMed  Google Scholar 

  • Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T. and Numa, S. (1990b) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling.Nature,346:567–569.

    PubMed  Google Scholar 

  • Thieleczek, R., Mayr, G. W. and Brandt, N. R. (1989) Inositol polyphosphate-mediated repartitioning of aldolase in skeletal muscle triads and myofibrils.J. Biol. Chem.,264:7349–7356.

    PubMed  Google Scholar 

  • Wier, W. G. (1990) Cytoplasmic [Ca2+] in mammalian ventricle: dynamic control by cellular processes.Annu. Rev. Physiol,52:467–485.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meissner, G., Lu, X. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Biosci Rep 15, 399–408 (1995). https://doi.org/10.1007/BF01788371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01788371

Key words

Navigation