Skip to main content
Log in

Visualization of domains in native and nucleotide-trapped myosin heads by negative staining

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Electron microscopy of negatively stained vertebrate skeletal muscle myosin molecules has revealed substructure suggestive of globular domains in the head portions of the molecule. This head substructure has been examined after both low and high electron dose. The results suggest it is probably not an artefact of radiation damage. The most common appearance is of one or two stain-filled clefts which run roughly perpendicular to the long axis of the head, giving rise to the appearance of two or three domains in a line. A large domain is located at the end of the head, while two smaller domains are arranged between this and the head-tail junction. The size of the large distal domain (about 10 nm long and about 7 nm wide at its widest point) is similar in heads showing either two or three domains.

Stable analogues of M. ATP and M. ADP.Pi, the predominant complexes present during hydrolysis of ATP by myosin, were prepared by crosslinking the two reactive SH groups (SH1 and SH2) in the myosin head heavy chain with N,N′-p-phenylenedimaleimide (pPDM) in the presence of ADP, and by forming a complex with vanadate ion and ADP. At this resolution (∼ 2 nm) the heads of these modified molecules did not appear markedly different from those of the untreated protein, although there was a small increase in the number of straight as opposed to curved heads after cross-linking withpPDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

pPDM:

N,N′-p-phenylenedimaleimide

PAR:

4-(2-pyridylazo)-resorcinol

Vi:

vanadate ion

References

  • Arata, T. &Shimizu, H. (1981) Spon-label study of actin-myosin-nucleotide interactions in contracting glycerinated muscle fibres.J. molec. Biol. 151, 411–37.

    PubMed  Google Scholar 

  • Balint, M., Wolf, I., Tarcsafalvi, A., Gergely, J. &Streter, F. A. (1978) Location of SH1 and SH2 in the heavy chain segment of heavy meromyosin.Arch. Biochem. Biophys. 190, 793–99.

    PubMed  Google Scholar 

  • Bhandhari, D. G., Trayer, H. R. &Trayer, I. P. (1985) Resonance energy transfer evidence for two attached states of the actomyosin complex.FEBS Lett. 187, 160–5.

    PubMed  Google Scholar 

  • Burke, M. &Reisler, E. (1977) Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin.Biochemistry,16, 5559–63.

    PubMed  Google Scholar 

  • Cooke, R. (1986) The mechanism of muscle contraction.CRC Crit. Rev. Biochem. 21, 53–118.

    PubMed  Google Scholar 

  • Craig, R., Greene, L. E. &Eisenberg, E. (1985) Structure of the actin-myosin complex in the presence of ATP.Proc. natn. Acad. Sci. USA.82, 3247–3251.

    Google Scholar 

  • Eisenberg, E. &Greene, L. E. (1980) The relation of muscle biochemistry to muscle physiology.Ann. Rev. Physiol. 42, 293–309.

    Google Scholar 

  • Elliott, A. &Offer, G. (1978) Shape and flexibility of the myosin molecule.J. molec. Biol. 123, 505–19.

    PubMed  Google Scholar 

  • Elliott, A., Offer, G. &Burridge, K. (1976) Electron microscopy of myosin molecules from muscle and non-muscle sources.Proc. Roy. Soc. ser. B,193, 45–53.

    Google Scholar 

  • Flicker, P. F., Wallimann, T. &Vibert, P. (1983) Electron microscopy of scallop myosin.J. molec. Biol. 169, 723–41.

    PubMed  Google Scholar 

  • Goodno, C. C. (1982) Myosin active-site trapping with vanadate ion.Methods Enzymol. 85, 116–23.

    PubMed  Google Scholar 

  • Goody, R. S. &Holmes, K. C. (1983) Cross-bridges and the mechanism of muscle contraction.Biochem. Biophys. Acta,726, 13–39.

    PubMed  Google Scholar 

  • Gratzer, W. B. &Lowey, S. (1969) Effect of substrate on the conformation of myosin.J. biol. Chem. 224, 22–5.

    Google Scholar 

  • Huxley, A. F. (1974) Muscular-contraction — review lecture.J. Physiol 243, 1–43.

    PubMed  Google Scholar 

  • Huxley, H. E. &Kress, M. (1985) Cross-bridge behaviour during muscle contraction.J. Musc. Res. Cell Motility,6, 153–61.

    Google Scholar 

  • Kielley, W. W., Kalckar, H. M. &Bradley, L. B. (1956) The hydrolysis of purine and pyrimidine nucleoside triphosphates by myosin.J. biol. Chem. 219, 95.

    PubMed  Google Scholar 

  • Knight, P. &Trinick, J. A. (1984) Structure of the myosin projections on native thick filaments from vertebrate skeletal muscle.J. molec. Biol. 177, 461–82.

    PubMed  Google Scholar 

  • Mendelson, R., Putnam, S. &Morales, M. (1975) Time-dependent fluorescence depolarisation and lifetime studies of myosin subfragment-1 in the presence of nucleotide and actin.J. Supramol. Struct. 3, 162–8.

    PubMed  Google Scholar 

  • Milligan, R. A. &Flicker, P. F. (1987) Structural relationships of actin, myosin and tropomyosin revealed by cryo-electron microscopy.J. Cell Biol. 105, 29–39.

    PubMed  Google Scholar 

  • Moore, P. B., Huxley, H. E. &Derosier, D. J. (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments.J. molec. Biol. 50, 279–295.

    PubMed  Google Scholar 

  • Morita, F. (1967) Interaction of heavy meromyosin with substrate.J. biol. Chem. 242, 4501–06.

    PubMed  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981a) Proteolytic approach to structure and function of actin recognition site in myosin heads.Biochemistry,20, 2110–20.

    PubMed  Google Scholar 

  • Murphy, A. J. (1974) Circular-dichroism of adenine and 6-mercaptopurine nucleotide complexes of heavymeromyosin.Arch. Biochem. Biophys. 163, 290–6.

    PubMed  Google Scholar 

  • Perry, S. V. (1955) Myosin adenosinetriphosphatase.Methods Enzymol. 2, 582–8.

    Google Scholar 

  • Piper, J. M. &Lovell, S. J. (1981) One-step molybdate method for rapid determination of inorganic phosphate in the presence of protein.Analyt. Biochem. 117, 70–5.

    PubMed  Google Scholar 

  • Pope, M. T. &Dale, B. W. (1968) Isopolyvanadates, -niobates, and tantalates.Quant. Rev. Chem. Soc. 22, 527.

    Google Scholar 

  • Pribil, R. (1972)Analytical Applications of EDTA and Related Compounds. Oxford: Pergamon, pp. 304–05.

    Google Scholar 

  • Seidel, J. C. &Gergely, J. (1972) Investigations of conformational changes in spin-labelled myosin.Cold Spring Harbor Symp. Quant. Biol. 37, 187–93.

    Google Scholar 

  • Stryer, L., Hurley, J. B. &Fung, B. K. (1981) Transducin: an amplifier protien in vision.Trends Biochem. Sci. 6, 245–7.

    Google Scholar 

  • Sutoh, K. (1982) Location of SH1 and SH2 along a heavy chain of myosin subfragment 1.Biochemistry,20, 3281–5.

    Google Scholar 

  • Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1984) Electron microscopic visualisation of the SH1 Thiol of myosin by the use of the Avidin-Biotin System.J. molec. Biol. 178, 323–79.

    PubMed  Google Scholar 

  • Taylor, K. A. &Amos, L. A. (1981) A new model for the geometry of the binding of myosin cross-bridges to muscle thin filaments.J. molec. Biol. 147, 297–324.

    PubMed  Google Scholar 

  • Unwin, P. N. T. (1974) Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein.J. molec. Biol. 87, 657–70.

    PubMed  Google Scholar 

  • Walker, M. L., Knight, P. &Trinick, J. A. (1985) Negative staining of myosin molecules.J. molec. Biol. 184, 535–42.

    PubMed  Google Scholar 

  • Wells, J. E. &Yount, R. G. (1982) Chemical modification of myosin by active-site trapping of metal-nucleotides with thiol cross-linking agents.Methods Enzymol. 85, 93–115.

    PubMed  Google Scholar 

  • Werber, M. M., Szent-Gyorgyi, A. G. &Fasman, G. D. (1972) Fluorescence studies on heavy meromyosinsubstrate interaction.Biochemistry,11, 2872–83.

    PubMed  Google Scholar 

  • Winkelmann, D. A., Lowey, S. &Press, J. L. (1983) Monoclonal antibodies localise changes on myosin heavy chain isoenzymes during avian myogenesis.Cell,34, 295–306.

    PubMed  Google Scholar 

  • Winkelmann, D. A., Alameda, S., Vibert, P. &Cohen, C. (1984) A new myosin fragment: visualisation of the regulatory domain.Nature (Lond.)307, 758–60.

    Google Scholar 

  • Winkelmann, D. A., Mekeel, H. &Rayment, I. (1985) Packing analysis of crystalline myosin subfragment-1.J. molec. Biol. 181, 487–501.

    PubMed  Google Scholar 

  • Winkelmann, D. A. &Lowey, S. (1986) Probing myosin head structure with monoclonal antibodies.J. molec. Biol. 188, 595–612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, M., Trinick, J. Visualization of domains in native and nucleotide-trapped myosin heads by negative staining. J Muscle Res Cell Motil 9, 359–366 (1988). https://doi.org/10.1007/BF01773879

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01773879

Keywords

Navigation