Skip to main content
Log in

Brush border myosin filament assembly and interaction with actin investigated with monoclonal antibodies

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Monoclonal antibodies binding to epitopes in the rod portion of brush border myosin were used to study the mechanism of filament assembly and its role in myosin interaction with actin. The antibodies and their Fab fragments had specific effects on the size of the filaments assembledin vitro. Two antibodies (BM3 and BM4), directed against the tip of the myosin tail, completely inhibited myosin filament assembly. The other antibodies (BM1, BM2 and BM5), binding to other sites along the myosin rod, only partially blocked filament growth, and short filaments could be assembled. Thiophosphorylated brush border myosin filaments appeared slightly more stable to the effects of the antibodies than those composed of dephosphorylated myosin. Only one (BM3) of the antibodies which completely inhibited the assembly of new filaments was capable of disassembling preformed myosin filaments. The other antibody, BM4, partially disassembled filaments, leaving ∼0.2-μm long ‘cores’, suggesting that polymerization in this myosin occurs by a biphasic Mechanism, I.e. the formation of a stable nucleus of antiparallely packed molecules, followed by elongation. The antibodies BM1 and BM2 bound to myosin filaments generating a regular transverse pattern with a ∼14-nm periodicity, and had little effect on the stability of these preformed filaments. Inhibition of filament formation and solubilization of the myosin by the antibodies appeared to be associated with inhibition of myosin interaction with actin, as measured by the actin-activated MgATPase activity. In the presence of the antibodies which completely inhibit filament assembly, we observed a decrease to ∼20% (BM4-Fab) and to ∼50% (BM3) of the control actin-activated myosin MgATPase activity, and this activity was kinetically different from that of the soluble myosin S1 fragment, suggesting that the rod has a profound effect on the kinetics of actomyosin interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelstein, R. S. &Eisenberg, E. (1980) Regulation and kinetics of the actin-myosin-ATP interaction.Ann. Rev. Biochem. 49, 921–56.

    PubMed  Google Scholar 

  • Barylko, B., Tooth, P. &Kendrick-Jones, J. (1986) Proteolytic fragmentation of brain myosin and localization of the heavy chain phosphorylation site.Eur. J. Biochem. 158, 271–82.

    PubMed  Google Scholar 

  • Citi, S. &Kendrick-Jones, J. (1986) Regulationin vitro of brush border myosin by light chain phosphorylation.J. molec. Biol. 188, 369–82.

    PubMed  Google Scholar 

  • Citi, S. &Kendrick-Jones, J. (1987) Studies on the structure and conformation of brush border myosin using monoclonal antibodies.Eur. J. Biochem. 165, 315–25.

    PubMed  Google Scholar 

  • Citi, S., Smith, R. &Kendrick-Jones, J., (1987) The effects of light chain phosphorylation and skeletal myosin on the stability of nonmuscle myosin filaments.J. molec. Biol. 198, 253–62.

    PubMed  Google Scholar 

  • Collins, J. H., Cote, G. P., &Korn, E. D. (1982a) Localization of the three phosphorylation sites on each heavy chain ofAcanthamoeba mysoin II to a segment at the end of the tail.J. biol. Chem. 257, 4529–34.

    PubMed  Google Scholar 

  • Collins, J. H., Kuznicki, J., Bowers, B., &Korn, E. D. (1982b) Comparison of the actin binding and filament formation properties of phosphorylated and dephosphorylatedAcanthamoeba myosin-II.Biochemistry 21, 6910–15.

    PubMed  Google Scholar 

  • Craig, R. &Megerman, J. (1977) Assembly of smooth muscle myosin into side-polar filaments.J. Cell Biol. 75, 990–8.

    PubMed  Google Scholar 

  • Craig, R., Smith, R. &Kendrick-Jones, J. (1983) Light chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules.Nature 302, 436–9.

    PubMed  Google Scholar 

  • Cross, R. A. &Vandekerckhove, J. (1986) Solubilitydetermining domain of smooth muscle myosin rod.FEBS Lett. 200, 355–60.

    PubMed  Google Scholar 

  • Cross, R. A., Cross, K. E. &Sobieszek, A. (1986) ATP linked monomer-polymer equilibrium of smooth muscle myosin: the free folded monomer traps ADP.Pi.EMBO J. 5, 2637–41.

    PubMed  Google Scholar 

  • Davis, J. S. (1981) The influence of pressure on the self assembly of the thick filament from the myosin of vertebrate skeletal muscle.Biochem. J. 197, 301–14.

    PubMed  Google Scholar 

  • Davis, J. S. (1985) Kinetics and thermodynamics of skeletal myosin: a pressure jump study.Biochemistry 24, 5263–9.

    PubMed  Google Scholar 

  • Goding, J. W. (1983) InMonoclonal Antibodies: Principles and Practice, pp 114–24, New York: Academic Press.

    Google Scholar 

  • Harrington, W. F. &Rodgers, M. E. (1984) Myosin.Annu. Rev. Biochem. 53, 35–73.

    PubMed  Google Scholar 

  • Hinssen, H. J., D'Haese, J., Small, J. V. &Sobieszek, A. (1978) Mode of filament assembly of myosin from muscle and nonmuscle cells.J. Ultrastruc. Res. 64, 282–302.

    Google Scholar 

  • Huxley, H. E. (1963) Electron microscope studies on the structure of natural and synthetic filaments from striated muscle.J. molec. Biol. 7, 281–308.

    Google Scholar 

  • Huxley, H. E. (1969) The mechanism of muscular contraction.Science 164, 1356–66.

    PubMed  Google Scholar 

  • Josephs, R. &Harrington, W. F. (1966) Studies on the formation and physical chemical properties of synthetic filaments.Biochemistry 5, 3474–87

    PubMed  Google Scholar 

  • Josephs, R. &Harrington, W. F. (1968) On the stability of myosin filaments.Biochemistry 7, 2834–47.

    PubMed  Google Scholar 

  • Kendrick-Jones, J., Lehman, W. &Szent-Gyorgyi, A. G. (1970) Regulation in molluscan muscles.J. molec. Biol. 54, 313–26.

    PubMed  Google Scholar 

  • Kendrick-Jones, J., Tooth, P. J., Taylor, K. A. &Scholey, J. M. (1982) Regulation of myosin filament assembly by light chain phosphorylation.Cold Spring Harbour Symp. Quant. Biol. 46, 929–38.

    Google Scholar 

  • Kendrick-Jones, J., Cande, W. Z., Tooth, P. J., Smith, R. C. &Scholey, J. M. (1983). Studies on the effect of phosphorylation of the 20,000 Mr light chain of vertebrate smooth muscle myosin.J. molec. Biol. 165, 139–62.

    PubMed  Google Scholar 

  • Kendrick-Jones, J., Smith, R. C., Craig, R. &Citi, S. (1987) The polymerization of vertebrate nonmuscle and smooth muscle myosins.J. molec. Biol. 198, 241–52.

    PubMed  Google Scholar 

  • Kiehart, D. P. &Pollard, T. D. (1984) Polymerization ofAcanthamoeba myosin-II stimulates actomyosin ATPase activity.Nature 308, 864–6.

    Google Scholar 

  • Kiehart, D. P., Kaiser, D. A. &Pollard, T. D. (1984a) Monoclonal antibodies demonstrate limited structural homology between myosin isozymes fromAcanthamoeba.J. cell Biol. 99, 1002–14.

    PubMed  Google Scholar 

  • Kiehart, D. P., Kaiser, D. A. &Pollard, T. D. (1984b) Direct localization of monoclonal antibody-binding sites onAcanthamoeba myosin II and inhibition of filament formation by antibodies that bind to specific sites on the myosin-II tail.J. Cell. Biol. 99, 1015–33.

    PubMed  Google Scholar 

  • Kuczmarski, E. R. &Spudich, J. A. (1980) Regulation of myosin self assembly: phosphorylation ofDictyostelium heavy chain inhibits formation of thick filaments.Proc. natn. Acad. Sci. USA 77, 7292–6.

    Google Scholar 

  • Kuznicki, J., Cote, G. P., Bowers, B. &Korn, E. D. (1985) Filament formation and actin activated ATPase activity are abolished by proteolytic removal of a small peptide from the tip of the tail of the heavy chain ofAcanthamoeba myosin II.J. biol. Chem. 260, 1967–72.

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. &Randall, R. J. (1951) Protein measurement with the Folin reagent.J. biol. Chem. 193, 265–75.

    PubMed  Google Scholar 

  • Margossian, S. S. &Lowey, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle.Methods Enzymol. 85, 55–71.

    PubMed  Google Scholar 

  • Maruta, H. &Korn, E. D. (1979).Acanthamoeba myosin II.J. biol. Chem. 252, 6501–9.

    Google Scholar 

  • Matsudaira, P. T. &Burgess, D. R. (1978) SDS microslab linear gradient polyacrylamide gel electrophoresis.Analyt. Biochem. 87, 386–96.

    PubMed  Google Scholar 

  • Niederman, R. &Peters, L. K. (1982). Native bare zone assemblage nucleates myosin filament assembly.J. molec. Biol. 161, 505–17.

    PubMed  Google Scholar 

  • Nyitray, L., Molz, G., Szilagyi, L., Balint, M., Lu, R. C., Wong, A. &Gergely, J. (1983) The proteolytic substructure of light meromyosin: localization of a region responsible for the low ionic strength insolubility of myosin.J. biol. Chem. 258, 13213–20.

    PubMed  Google Scholar 

  • Pagh, K. &Gerisch, G. (1986) Monoclonal antibodies binding to the tail ofDictyostelium discoideum myosin: their effects on antiparallel and parallel assembly and actin-activated ATPase activity.J. Cell. Biol. 103, 1527–38.

    PubMed  Google Scholar 

  • Perrie, N. T. &Perry, S. V. (1970) An electrophoretic study of the low molecular weight components of myosin.Biochem. J. 119, 31–8.

    PubMed  Google Scholar 

  • Pollard, T. D. (1982) Structure and polymerization ofAcanthamoeba myosin II filaments.J. Cell. Biol. 95, 816–25.

    PubMed  Google Scholar 

  • Reinach, F. C. &Fischman, D. A. (1985) Recombinant DNA approach for defining the primary structure of monoclonal antibody epitopes. The analysis of a conformation-specific antibody to myosin light chain 2.J. molec. Biol. 181, 411–22.

    PubMed  Google Scholar 

  • Rieker, J. P., Swanljung-Collins, H., Montibeller, J. &Collins, J. H. (1987) Brush border myosin heavy chain phosphorylation is regulated by calcium and calmodulin.FEBS Lett 212, 154–8.

    PubMed  Google Scholar 

  • Scholey, J. M., Smith, R. C., Drenckhahn, D., Groeschel-Stewart, U. &Kendrick-Jones, J. (1983) Thymus myosin. Isolation and characterization of calf thymus and thymic lymphocytes, and studies of the effect of phosphorylation of its Mr 20,000 light chain.J. biol. Chem. 257, 7737–45.

    Google Scholar 

  • Sellers, J. R., Eisenberg, E. &Adelstein, R. S. (1982) The binding of smooth muscle HMM to actin in the presence of ATP: the effect of phosphorylation.J. biol. Chem. 257, 13880–3.

    PubMed  Google Scholar 

  • Suzuki, H., Onishi, H., Takahashi, K., &Watanabe, S. (1978) Structure and function of chicken gizzard myosin.J. Biochem. 84, 1529–42.

    PubMed  Google Scholar 

  • Trinick, J. &Cooper, J. (1980) Sequential disassembly of vertebrate muscle thick filaments.J. molec. Biol. 141, 315–21.

    PubMed  Google Scholar 

  • Trotter, J. A., Nixon, C. S. &Johnson, M. A. (1985) The heavy chain of macrophage myosin is phosphorylated at the tip of the tail.J. biol. Chem. 260, 14374–8.

    PubMed  Google Scholar 

  • Trybus, K. M. &Lowey, S. (1984) Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength.J. biol. Chem. 259, 8564–71.

    PubMed  Google Scholar 

  • Trybus, K. M. &Lowey, S. (1987) Subunit exchange between smooth muscle myosin filaments.J. Cell Biol. 105, 3021–30.

    PubMed  Google Scholar 

  • Winkelmann, D. S. &Lowey, S. (1986) Probing myosin head structure with monoclonal antibodies.J. molec. Biol. 188, 595–612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Citi, S., Kendrick-Jones, J. Brush border myosin filament assembly and interaction with actin investigated with monoclonal antibodies. J Muscle Res Cell Motil 9, 306–319 (1988). https://doi.org/10.1007/BF01773874

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01773874

Keywords

Navigation