Skip to main content
Log in

Skinned ventricular fibres: troponin C extraction is species-dependent and its replacement with skeletal troponin C changes Sr2+ activation properties

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Troponin C (TnC) was extracted from bundles of rat and mouse skinned cardiac ventricular cells by a method similar to that previously used to extract TnC from skinned rabbit skeletal muscle cells (Kerricket al., J. biol. Chem. 260, 15687-93, 1985) and replaced with either bovine cardiac or rabbit fast-twitch skeletal TnC. In contrast, the same TnC extraction conditions will not extract TnC from either bovine or rabbit cardiac skinned fibres. When the extracted TnC was replaced by bovine cardiac TnC the Sr2+-activated tension relationship was not altered from control values. In contrast, replacement of the endogenous TnC with exogenous rabbit fast-twitch TnC caused the relationship between Sr2+ concentration and tension to shift towards higher concentrations of Sr2+. The Sr2+-activated tension of rat fibres with fast-twitch TnC was identical to that of rabbit fast-twitch skinned fibres. Partial skeletal TnC substitution in skinned cardiac cells gradually shifted the relationship between tension and [Sr2+] to higher Sr2+ concentrations and caused the cells to be activated over a wider range of Sr2+ concentrations. Thus it appears that the activation of rat cardiac skinned cells by Sr2+ is determined by characteristics of the TnC. In contrast, the Sr2+ activation of skinned rabbit fast-twitch skeletal fibres containing either cardiac or skeletal TnC is identical, strongly suggesting that protein-protein interactions determined the Sr2+-activation properties in these fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babu, A. &Gulati, J. (1986) The control of cardiac muscle contraction with fast-twitch muscle troponin-C (TNC).Biophys. J. 49, 83a.

    Google Scholar 

  • Babu, A., Scordilis, S. P., Sonnenblick, E. H. &Gulati, J. (1987) The control of myocardial contraction with skeletal fast muscle troponin C.J. biol. Chem. 262, 5815–22.

    PubMed  Google Scholar 

  • Best, P. M., Donaldson, S. K. B. &Kerrick, W. G. L. (1977) Tension in mechanically disrupted mammalian cardiac cells: Effects of magnesium adenosine triphosphate.J. Physiol. (lond.) 265, 1–77.

    Google Scholar 

  • Brandt. P. W., Cox, R. N., Kawai, M. &Robinson, T. (1982) Regulation of tension in skinned muscle fibers: Effect of crossbridge kinetics on apparent Ca2+ sensitivity.J. gen. Physiol. 79, 997–1016.

    PubMed  Google Scholar 

  • Brandt, P. W., Diamond, M. S., Gluck, B., Kawai, M. &Schachat, F. (1984) Molecular basis of cooperativity in vertebrate muscle thin filaments.Carlsberg Res. Commun. 49, 155–67

    Google Scholar 

  • Cox, J. A., Comte, M. &Stein, E. A. (1981) Calmodulinfree skeletal-muscle troponin C prepared in the absence of urea.Biochem. J. 195, 205–11.

    PubMed  Google Scholar 

  • Donaldson, S. K. B. &Kerrick, W. G. L. (1975) Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers.J. gen. Physiol. 66, 427–44

    Google Scholar 

  • Ebashi, S., Kodama, A. &Ebashi, F. (1968) Troponin: I. Preparation and physiological function.J. Biochem. 64, 465–77.

    PubMed  Google Scholar 

  • Greaser, M. L. &Gergely, J. (1971) Reconstruction of troponin activity from three protein components.J. biol. Chem. 246, 4226–33.

    PubMed  Google Scholar 

  • Hellam, D. C. &Podolsky, R. J. (1969) Force measurements in skinned muscle fibres.J. Physiol. (Lond.) 200, 807–19.

    Google Scholar 

  • Hill, A. V. (1913) The combinations of haemglobin with oxygen and with carbon monoxide.Biochem. J. 7, 471–80.

    Google Scholar 

  • Hill, T. L., Eisenberg, E. &Greene, L. E. (1983) Alternate model for the cooperative equilibrium binding of myosin subfragment-1-nucleotide complex to actin-troponin-tropomyosin.Proc. natl. Acad. Sci. USA 80, 60–4.

    PubMed  Google Scholar 

  • Holroyde, M. J., Robertson, S. P., Johnson, J. D. Solaro, R. J. &Potter, J. D. (1980) The calcium and magnesium sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase.J. biol. Chem. 255, 11688–93.

    PubMed  Google Scholar 

  • Kerrick, W. G. L. &Krasner, B. (1975) Disruption of the sarcolemma of mammalian skeletal muscle fibers by homogenization.J. appl. Physiol. 39, 1052–5.

    PubMed  Google Scholar 

  • Kerrick, W. G. L., Malencik, D. A., Hoar, P. E., Potter, J. D., Coby, R. L., Pocinwong, S. &Fischer, E. H. (1980) Ca2+ and Sr2+ activation: Comparison of cardiac and skeletal muscle contraction models.Pflügers Arch. 386, 207–13.

    Google Scholar 

  • Kerrick, W. G. L., Zot, H. G., Hoar, P. E. &Potter, J. D. (1985) Evidence that the Sr2+ activation properties of cardiac troponin C are altered when substituted into skinned skeletal muscle fibres.J. biol. Chem. 260, 15687–93.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.

    PubMed  Google Scholar 

  • Leavis, P. C. &Kraft, E. L. (1978) Calcium binding to cardiac troponin C.Archiv. Biochem. Biophys. 186, 411–15.

    Google Scholar 

  • Moss, R. L., Giulian, G. G. &Greaser, M. L. (1985) The effects of partial extraction of TnC upon the tension-pCa relationship in rabbit skinned skeletal muscle fibers.J. gen. Physiol. 86, 585–600.

    PubMed  Google Scholar 

  • Moss, R. L., Giulian, G. G. &Greaser, M. L. (1985) The effects of partial extraction of TnC upon the tension-pCa relationship in rabbit skinned muscle fibers.J. gen. Physiol. 86, 585–600.

    PubMed  Google Scholar 

  • Moss, R. L., Lauer, M. R., Giulian, G. G. &Greaser, M. L. (1986) Altered Ca2+ dependence of tension development in skinned skeletal muscle fibers following modification of troponin by partial substitution with cardiac troponin C.J. biol. Chem. 261, 6096–9.

    Google Scholar 

  • Potter, J. D. (1982) Preparation of troponin and its subunits from rabbit skeletal and bovine cardiac muscle.Methods in Enzymology 85, 241–63.

    PubMed  Google Scholar 

  • Potter, J. D. &Gergely, J. (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase.J. biol. Chem. 250, 4628–33.

    PubMed  Google Scholar 

  • Van Eerd, J. P. &Takahashi, K. (1976) Determination of the complete amino acid sequence of bovine cardiac troponin C.Biochem. USA 15, 1171–80.

    Google Scholar 

  • Zot, H. G. &Potter, J. D. (1982) A structural role of the Ca2+-Mg2+ sites on troponin C in the regulation of muscle contraction: Preparation and properties of troponin C depleted myofibrils.J. biol. Chem. 257, 7678–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoar, P.E., Potter, J.D. & Kerrick, W.G.L. Skinned ventricular fibres: troponin C extraction is species-dependent and its replacement with skeletal troponin C changes Sr2+ activation properties. J Muscle Res Cell Motil 9, 165–173 (1988). https://doi.org/10.1007/BF01773738

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01773738

Keywords

Navigation