Skip to main content
Log in

Regulation by Ca2+-calmodulin of the actin-bundling activity ofPhysarum 210-kDa protein

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

From the plasmodia of a lower eukaryote,Physarum polycephalum, we have previously purified a 210-kDa protein that showed similar properties to those of smooth muscle caldesmon. Further characterization of the 210-kDa protein revealed that it bundled actin filaments. This bundling activity was inhibited by calmodulin in the presence of Ca2+. Unlike smooth muscle caldesmon, the 210-kDa protein bundled actin filaments whether or not a reducing agent, such as dithiothreitol, was present. The protein was shown to have two (or more) different actin-binding sites which were classified into salt-sensitive and salt-insensitive sites. Electron microscopy revealed that the 210-kDa protein was an elongated molecule (mean length, 97 ± 25 nm) which was bent in the middle. The Stokes radius and sedimentation coefficient of the 210-kDa protein were 130 Å and 2.9 S, respectively. An immunofluorescence study revealed that the 210-kDa protein colocalized with the bundles of actin filaments in thin-spread preparations ofPhysarum plasmodia, suggesting that the 210-kDa protein was regulating the appearance and disappearance of the actin bundles that are associated with the contraction-relaxation cycle of the plasmodia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach, F. &Wohlfarth-Botterman, K. (1986a) Reactivation of cell-free models of endoplasmic drops fromPhysarum polycephalum after glycerol extraction at low ionic strength.Eur. J. Cell Biol. 40, 135–8.

    PubMed  Google Scholar 

  • Achenbach, F. &Wohlfarth-Botterman, K. (1986b) Successive contraction-relaxation cycles experimentally induced in cell-free models ofPhysarum polycephalum.Eur. J. Cell Biol. 42, 111–17.

    Google Scholar 

  • Bartegi, A., Fattoum, A., Dagorn, C., Gabrion, J. &Kassab, R. (1989) Isolation, characterization and immunocytochemical localization of caldesmon-like protein from molluscan striated muscle.Eur. J. Biochem. 185, 589–95.

    PubMed  Google Scholar 

  • Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–54.

    PubMed  Google Scholar 

  • Bretscher, A. (1984) Smooth muscle caldesmon: rapid purification and F-actin cross-linking properties.J. Biol. Chem. 259, 12837–80.

    Google Scholar 

  • Bretscher, A. &Lynch, W. (1985) Identification and localization of immunoreactive forms of caldesmon in smooth and nonmuscle cells: a comparison with the distribution of tropomyosin and alpha-actinin.J. Cell Biol. 100, 1656–63.

    PubMed  Google Scholar 

  • Camp, W. G. (1936) A method of cultivating myxomycete plasmodia.Bull. Torrey Bot. Club 63, 205–10.

    Google Scholar 

  • Dingus, J., Hwo, S. &Bryan, J. (1986) Identification by monoclonal antibodies and characterization of human platelet caldesmon.J. Cell Biol. 102, 1748–57.

    PubMed  Google Scholar 

  • Dabrowska, R., Gosh, A., Galazkewicz, B. &Osinska, H. (1985) The influence of caldesmon on ATPase activity of the skeletal muscle actomyosin and bundling of actin filaments.Biochim. Biophys. Acta 842, 70–5.

    PubMed  Google Scholar 

  • Fürst, D., Cross, A., De Mey, J. &Small, V. J. (1986) Caldesmon is an elongated, flexible molecule localized in the actomyosin domains of smooth muscle.EMBO J. 5, 251–7.

    PubMed  Google Scholar 

  • Harricane, M.-C., Bonet-Kerrache, A., Cavadore, C. &Mornet, D. (1991) Actin-caldesmon-myosin-subfragment-1 ternary complex viewed by electron microscopy.Eur. J. Biochem. 196, 219–24.

    PubMed  Google Scholar 

  • Hasegawa, T., Takahashi, S., Hayashi, H. &Hatano, S. (1980) Fragmin: a calcium ion-sensitive regulatory factor on the formation of actin filaments.Biochemistry 18, 2677–83.

    Google Scholar 

  • Hatano, S. &Oosawa, F. (1966) Isolation and characterization of plasmodium actin.Biochim. Biophys. Acta 127, 488–98.

    PubMed  Google Scholar 

  • Hayashi, K., Fujio, Y., Kato, I. &Sobue, K. (1991) Structural and functional relationships between h- and l-caldesmons.J. Biol. Chem. 266, 355–61.

    PubMed  Google Scholar 

  • Ishigami, M. (1986) Dynamic aspects of the contractile system inPhysarum polycephalum. I. Changes in spatial organization of cytoplasmic fibrils according to the contraction-relaxation cycle.Cell Motil. Cytoskel. 6, 439–47.

    Google Scholar 

  • Ishigami, M., Kuroda, K. &Hatano, S. (1987) Dynamic aspects of the contractile system inPhysarum plasmodium. III. Cyclic contraction-relaxation of the plasmodial fragment in accordance with the generation-degeneration of cytoplasmic actomyosin fibrils.J. Cell Biol. 105, 381–6.

    PubMed  Google Scholar 

  • Ishikawa, R., Yamashiro, S. &Matsumura, F. (1989) Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin: potentiation of protective ability of tropomyosin by 83-kDa non-muscle caldesmon.J. Biol. Chem. 264, 7490–7.

    PubMed  Google Scholar 

  • Ishikawa, R., Okagaki, T., Higashi-Fujime, S. &Kohama, K. (1991) Stimulation of the interaction between actin and myosin byPhysarum caldesmon-like protein and smooth muscle caldesmon.J. Biol. Chem. 266, 21784–90.

    PubMed  Google Scholar 

  • Itano, N. &Hatano, S. (1991) F-actin bundling protein fromPhysarum: purification and its capacity for co-bundling of actin filaments and microtubules.Cell Motil. Cytoskel. 19, 244–54.

    Google Scholar 

  • Kamiya, N. (1981) Physical and chemical basis of cytoplasmic streaming.Ann. Rev. Plant Physiol. 32, 205–36.

    Google Scholar 

  • Kawano, S., Anderson, R. W., Namba, T. &Kuroiwa, T. (1987) Polymorphism and uniparental inheritance of mitochondrial DNA inPhysarum polycephalum.J. Gen. Microbiol. 133, 3175–82.

    PubMed  Google Scholar 

  • Kohama, K. (1981) Amino acid incorporation rates into myofibrillar proteins of dystrophic chicken skeletal muscle.J. Biochem. (Tokyo) 90, 497–501.

    Google Scholar 

  • Kohama, K. (1987) Ca2+-inhibitory myosins: their structure and function.Adv. Biophys. 23, 149–82.

    PubMed  Google Scholar 

  • Kohama, K. (1990) Inhibitory mode for Ca2+ regulation.Trends Pharm. Sci. 11, 433–5.

    PubMed  Google Scholar 

  • Kohama, K., Okagaki, T., Takano-Ohmuro, H. &Ishikawa, R. (1991) Characterization of calcium-binding light chain as a Ca2+-receptive subunit ofPhysarum myosin.J. Biochem. 110, 566–70.

    PubMed  Google Scholar 

  • Koji-Owada, M., Hakura, A., Iida, K., Yahara, I., Sobue, K. &Kakiuchi, S. (1984) Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells.Proc. Natl. Acad. Sci. USA 81, 3133–7.

    PubMed  Google Scholar 

  • Kuroda, R., Hatano, S., Hiramoto, Y. &Kuroda, H. (1988) Change of cytosolic Ca-ion concentration in the contraction and relaxation cycle ofPhysarum microplasmodia.Protoplasma (Suppl. 1): 72–80.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4.Nature 227, 680–5.

    PubMed  Google Scholar 

  • Lynch, W., Riseman, V. &Bretscher, A. (1987) Smooth muscle caldesmon is an extended flexible monomeric protein in solution that can readily undergo reversible intra- and intermolecular sulfhydryl cross-linking.J. Biol. Chem. 262, 7429–37.

    PubMed  Google Scholar 

  • Moody, C. J., Marston, S. B. &Smith, C. J. W. (1985) Bundling of actin filaments by aorta caldesmon is not related to its regulatory function.FEBS Lett. 191, 107–12.

    PubMed  Google Scholar 

  • Mornet, D., Harricane, M.-C. &Audemard, E. (1988) A 35-kilodalton fragment from gizzard smooth muscle caldesmon that induces F-actin bundles.Biochem. Biophys. Res. Commun. 155, 808–15.

    PubMed  Google Scholar 

  • Ozaki, K. &Hatano, S. (1984) Mechanism of regulation of actin polymerization byPhysarum profilin.J. Cell Biol. 98, 1919–25.

    PubMed  Google Scholar 

  • Pies, N. J. &Wohlfarth-Botterman, K. (1986) Reactivation of a cell-free model fromPhysarum polycephalum: studies on cryosections indicate an inhibitory effect of Ca2+ on cytoplasmic actomyosin contraction.Eur. J. Cell Biol. 40, 139–49.

    PubMed  Google Scholar 

  • Ridgway, E. B. &Durham, A. C. H. (1976) Control of chemotaxis inPhysarum polycephalum.J. Cell Biol. 69, 223–6.

    PubMed  Google Scholar 

  • Riseman, V. M., Lynch, W. P., Nefsky, B. &Bretscher, A. (1989) The calmodulin and F-actin binding sites of smooth muscle caldesmon lie in the carboxyl-terminal domain whereas the molecular weight heterogeneity lies in the middle of the molecule.J. Biol. Chem. 264, 2869–75.

    PubMed  Google Scholar 

  • Schachman, H. K. (1975) Ultracentrifugation, diffusion and viscometry.Methods Enzymol. 4, 32–70.

    Google Scholar 

  • Siegel, L. M. &Monty, K. J. (1966) Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation: application to crude preparations of sulfite and hydroxylamine reductase.Biochim. Biophys. Acta 112, 346–62.

    PubMed  Google Scholar 

  • Sobue, K., Muramoto, Y, Fujita, M. &Kakiuchi, S. (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin.Proc. Natl. Acad. Sci. USA 78, 5652–5.

    PubMed  Google Scholar 

  • Sobue, K., Takahashi, K., Tanaka, T., Kanda, K., Ashino, N., Kakiuchi, S. &Maruyama, K. (1985) Crosslinking of actin filaments is caused by caldesmon aggregates, but not by its dimers.FEBS Lett. 182, 201–4.

    PubMed  Google Scholar 

  • Spudich, J. A. &Watt, S. (1971) The regulation of rabbit skeletal muscle contraction.J. Biol. Chem. 264, 4866–71.

    Google Scholar 

  • Sutoh, K., Iwane, M., Matsuzaki, F., Kikuchi, M. &Ikai, A. (1984) Isolation and characterization of a high molecular weight actin-binding protein fromPhysarum polycephalum.J. Cell Biol. 98, 1611–18.

    PubMed  Google Scholar 

  • Tyler, J. M. &Branton, D. (1980) Rotary shadowing of extended molecules dried from glycerol.J. Ultrastruct. Res. 71, 95–102.

    PubMed  Google Scholar 

  • Ueda, T., Olenhusen, G. &Wohlfarth-Botterman, K. (1978) Reaction of the contractile apparatus inPhysarum to inject Ca2+, ATP, ADP and 5′AMP.Cytobiologie 18, 76–94.

    PubMed  Google Scholar 

  • Wang, C.-L. A., Wang, L.-W. C., Xu, S., Lu, R. C., Saavedra-Alanis, V. &Bryan, J. (1991) Localization of the calmodulin- and the actin-binding sites of caldesmon.J. Biol. Chem. 266, 9166–72.

    PubMed  Google Scholar 

  • Yamashiro-Matsumura, S. &Matsumura F. (1988) Characterization of 83-kilodalton non-muscle caldesmon from cultured rat cells: stimulation of actin binding of non-muscle tropomyosin and periodic localization along micro-filaments like tropomyosin.J. Cell Biol. 106, 1973–83.

    PubMed  Google Scholar 

  • Yamashiro-Matsumura, S., Ishikawa, R. &Matsumura, F. (1988) Purification and characterization of 83 kDa non-muscle caldesmon from cultured rat cells: changes in its expression upon L6 myogenesis.Protoplasma (Suppl. 2); 9–21.

    Google Scholar 

  • Yoshimoto, Y. &Kamiya, N. (1984) ATP and calcium-controlled contraction in a saponin model ofPhysarum polycephalum.Cell Struct. Funct. 9, 135–41.

    PubMed  Google Scholar 

  • Yoshimoto, Y., Matsumura, F. &Kamiya N. (1981) Simultaneous oscillations of Ca2+ efflux and tension generation in the permeabilized plasmodial strand ofPhysarum.Cell Motil. 1, 433–43.

    PubMed  Google Scholar 

  • Yoshimoto, T., Kuroda, K. &Hiramoto, Y. (1988) Visualization of Ca2+ localization in caffeine-treated endoplasmic drops ofPhysarum plasmodium.Proc. Jpn Acad. 64B, 109–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, R., Okagaki, T. & Kohama, K. Regulation by Ca2+-calmodulin of the actin-bundling activity ofPhysarum 210-kDa protein. J Muscle Res Cell Motil 13, 321–328 (1992). https://doi.org/10.1007/BF01766460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01766460

Keywords

Navigation