Skip to main content
Log in

Two probabilistic results on rectilinear steiner trees

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In recent years, researchers have proven many theorems of the following form: given points distributed according to a Poisson process with intensity parameterN on the unit square, the length of the shortest spanning tree (rectilinear Steiner tree, traveling salesman tour, or some other functional) on these points is, with probability one, asymptotic to β√N for some constant β (which is presumably different for different functionals). Though these theorems are well understood, very little is known about the constants β. In this paper we prove that the constants in the cases of rectilinear spanning tree and rectilinear Steiner tree do, indeed, differ. This proof is constructive in the sense that we give a polynomial-time heuristic algorithm that produces a Steiner tree of expected length some fraction shorter than a minimum spanning tree. We continue the analysis to prove a second result: the expected value of the minimum number of Steiner points in a shortest rectilinear Steiner tree grows linearly withN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Aho, M. R. Garey, and F. K. Hwang, Rectilinear Steiner trees: efficient special case algorithms,Networks,7 (1977), 37–58.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. W. Bern and M. de Carvalho. A greedy heuristic for the rectilinear Steiner tree problem, Technical Report UCB/CSD 87/306, University of California at Berkeley, 1986.

  3. F. R. K. Chung and R. L. Graham, On Steiner trees for bounded point sets,Geom. Dedicata,11 (1981), 353–361.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. R. K. Chung and F. K. Hwang, The largest minimal rectilinear Steiner trees for a set ofn points enclosed in a rectangle with given perimeter,Networks,9 (1979), 19–36.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete,SIAM J. Appl. Math.,32 (1977), 826–834.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Haimovich and A. H. G. Rinnooy Kan, Personal communication with A. H. G. Rinnooy Kan.

  7. F. K. Hwang, On Steiner minimal trees with rectilinear distance,SIAM J. Appl. Math.,30 (1976), 104–114.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. K. Hwang, The rectilinear Steiner problem,Design Automat. Fault-Tolerant Comput.,2 (1978), 303–310.

    MathSciNet  Google Scholar 

  9. F. K. Hwang, AnO(N logN) algorithm for suboptimal rectilinear Steiner trees,IEEE Trans. Circuits and Systems,26 (1979), 75–77.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. M. Karp and J. M. Steele, Probabilistic analysis of heuristics, inThe Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization (E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds.), Wiley, New York, 1985, Chapter 6.

    Google Scholar 

  11. J. Komlós and M. T. Shing, Probabilistic partitioning algorithms for the rectilinear Steiner problem,Networks,15 (1985), 413–424.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem,Proc. Amer. Math. Soc.,7 (1956), 48–50.

    Article  MathSciNet  Google Scholar 

  13. E. L. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, New York, 1976, p. 290.

    MATH  Google Scholar 

  14. J. H. Lee, N. K. Bose, and F. K. Hwang, Use of Steiner's problem in suboptimal routing in rectilinear metric,IEEE Trans. Circuits and Systems,23 (1976), 470–476.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. MacGregor-Smith and J. S. Liebman, Steiner trees, Steiner circuits, and the interference problem in building design,Engrg. Optim.,4 (1979), 15–36.

    Article  Google Scholar 

  16. J. MacGregor-Smith, D. T. Lee, and J. S. Liebman, AnO(N logN) heuristic algorithm for the rectilinear Steiner problem,Engrg. Optim.,4 (1980), 179–192.

    Article  Google Scholar 

  17. A. Ng, Personal communication, University of California at Berkeley.

  18. C. H. Papadimitriou, The probabilistic analysis of matching heuristics,Proceedings of the 15th Annual Allerton Conference on Communication, Control, and Computing, 1977, pp. 368–378.

  19. H. R. Pitt,Tauberian Theorems, Oxford University Press, Oxford, 1958, pp. 37–42.

    MATH  Google Scholar 

  20. R. C. Prim, Shortest connecting networks and some generalizations,Bell System Tech. J.,36 (1957), 1389–1401.

    Google Scholar 

  21. M. Servit, Heuristic algorithms for rectilinear Steiner trees,Digital Process.,7 (1981), 21–32.

    MATH  Google Scholar 

  22. J. M. Steele, Subadditive Euclidean functionals and nonlinear growth in geometric probability,Ann. Probab.,9 (1982), 365–376.

    Article  MathSciNet  Google Scholar 

  23. C. D. Thomborson, Personal communications, University of Minnesota at Duluth.

  24. Y. Y. Yang and O. Wing, Suboptimal algorithm for a wire routing problem,IEEE Trans. Circuit Theory,19 (1972), 508–511.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. K. Wong.

Research supported in part by NSF Grant MCS-8311422. A preliminary version of this paper appeared in theProceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bern, M.W. Two probabilistic results on rectilinear steiner trees. Algorithmica 3, 191–204 (1988). https://doi.org/10.1007/BF01762114

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01762114

Key words

Navigation