Skip to main content
Log in

The ‘nothing dehydrogenase’ reaction and the detection of ischaemic damage

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The ‘nothing dehydrogenase’ reaction is defined as the reduction of tetrazolium salts in media lacking specific substrates for dehydrogenases. In this investigation, the kinetics of the ‘nothing dehydrogenase’ reaction were studied in cryostat sections of rat heart and liver with the use of various polyvinyl alcohol-containing incubation media. Formazan production was measured at 585 nm with a cytophotometer. The ‘nothing dehydrogenase’ reaction was substantially lower in the heart than in the liver which was due to low levels of endogenous lactate and the absence of proteins containing thiol groups, such as albumin, in the heart.In vitro ischaemia resulted in a reduced ‘nothing dehydrogenase’ reaction due to loss of NAD+, possibly as a consequence of its breakdown by glycohydrolase activity. One hour reperfusion following one hour ischaemia caused a decreased ‘nothing dehydrogenase’ reaction in certain areas of the liver. This reduction was a result of leakage of lactate dehydrogenase and thiol-containing molecules. It appeared at the ultrastructural level that parenchymal and endothelial cells were heavily damaged in the areas containing a low ‘nothing dehydrogenase’ activity. In conclusion, early ischaemic damage in liver can be detected with the ‘nothing dehydrogenase’ reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANDERSON, K. R., POPPLE, A., PARKER, D. J., SAYER, R., TRICKEY, R. J. & DAVIES, M. J. (1979) An experimental assessment of macroscopic enzyme techniques for the autopsy demonstration of myocardial infarction.J. Pathol. 127, 93–8.

    Google Scholar 

  • BELLOMO, G. & ORRENIUS, S. (1985) Altered thiol and calcium homeostasis in oxidative hepatocellular injury.Hepatology 5, 876–82.

    Google Scholar 

  • BUTCHER, R. G. (1972) Precise cytochemical measurement of neotetrazolium formazan by scanning and integrating microdensitometry.Histochemie 32, 171–90.

    Google Scholar 

  • BUTCHER, R. G. (1978) The measurement in tissue sections of the two formazans derived from nitroblue tetrazolium in dehydrogenase reactions.Histochem. J. 10, 739–44.

    Google Scholar 

  • DERIAS, N. W. & ADAMS, C. W. M. (1978) Nitroblue tetrazolium test: early gross detection of human myocardial infarcts.Brit. J. Exp. Pathol. 59, 254–8.

    Google Scholar 

  • DERIAS, N. W. & ADAMS, C. W. M. (1982) Macroscopic enzyme histochemistry in myocardial infarction: use of coenzyme, cyanide and phenazine methosulphate.J. Clin. Pathol. 35, 410–13.

    Google Scholar 

  • ENGLER, R. L., DAHLGREN, M. D., MORRIS, D. D., PETERSON, M. A. & SCHMIDSCHONBEIN, G. W. (1986) Role of leukocytes in response to acute myocardial ischemia and reflow in dogs.Amer. J. Physiol. 251, H314-H323.

    Google Scholar 

  • FREDERIKS, W. M., FRONIK, G. M. & HESSELING, J. G. M. (1984) A method for quantitative analysis of the extent of necrosis in ischemic rat liver.Exp. Mol. Pathol. 41, 119–25.

    Google Scholar 

  • FREDERIKS, W. M., FRONIK, G. M., MARX, F. & JAMES, J. (1985) Influence of nutritional state on ischemic damage in rat liver.Liver 5, 342–7.

    Google Scholar 

  • FREDERIKS, W. M., JAMES, J., BOSCH, K. S., SCHRODER, M. J. R. & SCHUYT, H. C. (1982) A model for provoking ischemic necrosis in rat liver parenchyma and its quantitative analysis.Exp. Pathol. 22, 245–52.

    Google Scholar 

  • FREDERIKS, W. M. & MARX, F. (1987) Changes in cytoplasmic and mitochondrial enzymes in rat liver ischemia followed by reperfusion.Exp. Mol. Pathol. 47, 291–9.

    Google Scholar 

  • FREDERIKS, W. M., MYAGKAYA, G. L., BOSCH, K. S., FRONIK, G. M., VAN VEEN, H. A., VOGELS, I. M. C. & JAMES, J. (1983) The value of enzyme leakage for the prediction of necrosis in liver ischemia.Histochemistry 78, 459–72.

    Google Scholar 

  • FLINT, E. J. (1984) Phenazine methosulphate and the nitroblue tetrazolium macroreaction for recent myocardial infarction.J. Clin. Pathol. 37, 477–8.

    Google Scholar 

  • GALLAGHER, G. T., PARISH, K. A., VENKATACHALAM, M. A. & SZABO, S. (1979) Decreased glutathione in ischemic liver and possible protection with thiol administration.Fed. Proc. 38, 134.

    Google Scholar 

  • HAYASHI, H., IRSHAD, I. H., CLEMENS, M. G. & BAUE, A. E. (1986) Hepatic ischemia models for determining the effects of ATP-MgCl2 treatment.J. Surg. Res. 40, 167–75.

    Google Scholar 

  • HUNT, J. L. & HECK, E. L. (1984) Identification of nonviable muscle in electric burns with nitroblue tetrazolium.J. Surg. Res. 37, 369–75.

    Google Scholar 

  • KLEIN, H. H., PUSCHMANN, S., SCHAPER, J. & SCHAPER, W. (1981a) The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction.Virchows Arch. (Pathol. Anat.) 393, 287–97.

    Google Scholar 

  • KLEIN, H. H., SCHAPER, J., PUSCHMANN, S., NIENABER, CH., KREUZER, H. & SCHAPER, W. (1981b) Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage of myocardial cells.Basic Res. Cardiol. 76, 612–21.

    Google Scholar 

  • KLONER, R. A., GANOTE, C. E., WHALEN, D. A. & JENNINGS, R. B. (1974) Effect of a transient period of ischaemia on myocardial cells.Amer. J. Pathol. 74, 399–422.

    Google Scholar 

  • LISZCZAK, T. M., HEDLEY-WHYTE, E. T., ADAMS, J. F., HAN, D. H., KOLLURI, V. S., VACANTI, F. X., HEROS, R. C. & ZERVAS, N. T. (1984) Limitations of tetrazolium salts in delineating infarcted brain.Acta Neuropathol. 65, 105–57.

    Google Scholar 

  • MEISTER, A. (1984) New developments in glutathione metabolism and their potential application in therapy.Hepatology 4, 739–42.

    Google Scholar 

  • METZGER, J. & LAUTERBERG, B. H. (1985) Increased generation of glutathione disulfide (GSSG) in reperfused ischemic liver: prevention of oxidant stress and functional improvement by allopurinol.Gastroenterology 88, 1678.

    Google Scholar 

  • MYAGKAYA, G. L., VAN VEEN, H. & JAMES, J. (1984) Ultrastructural changes in rat liver sinusoids during prolonged normothermic and hypothermic ischemiain vitro.Virchows Arch. B (Cell Pathol.) 47, 361–73.

    Google Scholar 

  • MYAGKAYA, G. L., VAN VEEN, H. & JAMES, J. (1985) Quantitative analysis of mitochondrial flocculent densities in rat hapatocytes during normothermic and hypothermis ischemiain vitro.Virchows Arch. B (Cell Pathol.) 49, 61–72.

    Google Scholar 

  • NACHLAS, M. M. & SHNITKA, T. K. (1963) Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity.Amer. J. Pathol. 42, 379–405.

    Google Scholar 

  • RACKER, E. (1955) Mechanism of action and properties of pyridine nucleotide-limited enzymes.Physiol. Rev. 35, 1–56.

    Google Scholar 

  • RÄDER, L., SIEMS, W., MULLER, M. & GERBER, G. (1985) Formation of activated oxygen in the hepoxic rat liver.Cell Biochem. Function 3, 289–96.

    Google Scholar 

  • SANDRITTER, H. W. & JESTADT, R. (1958) Triphenyltetrazoliumchlorid (TTC) als Reduktionsindikator zur makroskopischen Diagnose des frischen Herzinfarktes.Verh. Dtsch. Ges. Pathol. 41, 165–70.

    Google Scholar 

  • TRUMP, B. F., BEREZESKY, I. K. & OSORNIO-VARGAS, A. R. (1982) Cell death and the disease process. The role of calcium. InCell Death in Biology and Pathology (edited by BOWEN, I. D. & LOCKSHIN, R. A.), pp. 209–42. London, New York: Chapman & Hall.

    Google Scholar 

  • VAN NOORDEN, C. J. F. & BUTCHER, R. G. (1986) The out-of-range error in microdensitometry.Histochem. J. 18, 397–8.

    Google Scholar 

  • VAN NOORDEN, C. J. F., KOOIJ, A. & FREDERIKS, W. M. (1982) The detection of necrosis in ischemic rat liver with tetrazolium salts. InProtection of Tissues against Hypoxia (edited by WAUQUIER, A.et al.), pp. 123–5. Amsterdam: Elsevier Biochemical Press.

    Google Scholar 

  • VAN NOORDEN, C. J. F., KOOIJ, A., VOGELS, I. M. C. & FREDERIKS, W. M. (1985) On the nature of the ‘nothing dehydrogenase’ reaction.Histochem. J. 17, 1111–18.

    Google Scholar 

  • VAN NOORDEN, C. J. F. & TAS, J. (1982) The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studiedin vitro and with a model system of polyacrylamide films.J. Histochem. Cytochem. 30, 12–20.

    Google Scholar 

  • VAN NOORDEN, C. J. F. & VOGELS, I. M. C. (1989) Cytophotometric analysis of reaction rates of succinate and lactate dehydrogenase activity in rat liver, heart muscle and trachea epithelium.Histochem. J.,21, 9 & 10 575–83.

    Google Scholar 

  • VAN NOORDEN, C. J. F., VOGELS, I. M. C. & JAMES, J. (1984) Phenazine methosulphate in NAD(P)-dependent dehydrogenase cytochemistry.Histochem. J. 16, 799–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederiks, W.M., Marx, F. & Myagkaya, G.L. The ‘nothing dehydrogenase’ reaction and the detection of ischaemic damage. Histochem J 21, 565–573 (1989). https://doi.org/10.1007/BF01753357

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01753357

Keywords

Navigation