Skip to main content
Log in

Metatarsal robusticity in primates and a few other plantigrade mammals

  • Published:
Primates Aims and scope Submit manuscript

Abstract

By using a new technique for determining relative metatarsal robusticity, the distribution of the 1+5 pattern (in which M5 is the second most robust metatarsal after M1) and 1→5 pattern (in which M5 is the least robust of all metatarsals) was established in primates and a few other plantigrade mammals. The first pattern is associated with a terrestrial and the second with an arboreal substrate. Robusticity formulae are not connected with specific locomotor patterns, but a total robusticity quotient is associated with these patterns and substrate preference as well. Changes in substrate preference are accompanied by changes of total robusticity, an increased number of permutations and ultimately a change of the robusticity pattern. Intermetatarsal robusticity gradients are related to the direction and intensity of muscular activity. A combined analysis of all factors can reveal a great deal of the locomotor history of a taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald, J. D., C. O. Lovejoy, &K. G. Heiple, 1972. Implications of relative robusticity in the Olduvai metatarsus.Amer. J. Phys. Anthrop. 37: 93–95.

    Google Scholar 

  • Baker, R. H., 1968. Habitats and distribution. In:Biology of Peromyscus (Rodentia),J. A. King (ed.), Amer. Soc. Mammalog., Special Publ. No. 2.

  • Campbell, B., 1966.Human Evolution: An Introduction to Man's Adaptations. Cambridge Univ. Press, New York.

    Google Scholar 

  • Cartmill, M., 1972. Arboreal adaptations and the origin of the Order Primates. In:The Functional and Evolutionary Biology of Primates R. Tuttle (ed.), Aldine-Atherton, Chicago, New York, pp. 97–122.

    Google Scholar 

  • Day, M. H. &J. R. Napier, 1964. Fossil footbones.Nature 201: 969–970.

    Google Scholar 

  • Dice, L. R., 1922. Some factors affecting the distribution of the prairie vole, forest deer mouse, and prairie deer mouse.Ecology 3: 29–47.

    Google Scholar 

  • Evans, F. C., 1957. Utilization of resources by experimental populations ofPeromyscus.Bull. Ecol. Soc. Amer. 38: 66 (abstract).

    Google Scholar 

  • Findley, J. S., 1967. Insectivores and Dermopterans. In:Recent Mammals of the World S. Anderson &J. Knox Jones, Jr., (eds.), The Ronald Press Co., New York, pp. 87–108.

    Google Scholar 

  • Foster, D. D., 1959. Differences in behavior and temperament between two races of deer mouse.J. Mamm. 40: 496–513.

    Google Scholar 

  • Grassé, P. P., 1955.Traité de Zoologie. Masson et Cie, Paris.

    Google Scholar 

  • Hershkovitz, P., 1962. Evolution of neotropical cricetine Rodents (Muridae).Fieldiana: Zoology, 46.

  • Horner, B. E., 1954. Arboreal adaptations ofPeromyscus with special reference to the use of the tail.Contr. Lab. Vert. Biol., Univ. Mich. 61: 1–85.

    Google Scholar 

  • King, J. A., 1968. Psychology. In:Biology of Peromyscus (Rodentia),J. A. King (ed.), The Amer. Soc. of Mamm., Special Publ. No. 2.

  • ——, 1968. Behavioral comparisons within the genusPeromyscus.Papers Mich. Acad. Sci., Arts & Letters 53: 113–136.

    Google Scholar 

  • ——, 1964. Sand digging contingent upon bar-pressing in deer mice (Peromyscus).Anim. Behav. 12: 446–450.

    Google Scholar 

  • Napier, J. R. &P. H. Napier, 1967.A Handbook of Living Primates Academic Press, London.

    Google Scholar 

  • ——, 1967. Vertical clinging and leaping: a newly recognized category of locomotor behavior among primates.Folia primat. 6: 180–203.

    Google Scholar 

  • Riesenfeld, A., 1972. Metatarsal robusticity in bipedal rats.Amer. J. Phys. Anthrop. 36: 229–233.

    Google Scholar 

  • ——, 1974. Changes in metatarsal robusticity following experimental surgery.Amer. J. Phys. Anthrop., 40: 205–212.

    Google Scholar 

  • Simons, E. L., 1962. Fossil evidence relating to the early evolution of primate behavior.Ann. N. Y. Acad. Sci. 102: 282–294.

    Google Scholar 

  • ——, 1972.Primate Evolution, An Introduction to Man's Place in Nature Macmillan Co., New York.

    Google Scholar 

  • Sussman, R. W., An ecological study of two Madagascar primates:Lemur fulvus rufus andLemur catta. Ph. D. thesis, Duke Univ. (in prep.).

  • Szalay, F. S., 1972. Paleobiology of the earliest primates. In:The Functional and Evolutionary Biology of Primates R. Tuttle (ed.), Aldine-Atherton, Chicago, New York, pp. 3–35.

    Google Scholar 

  • ——, 1974. Origins, evolution, and function of the tarsus in late Cretaceous eutherians and Paleocene primates. In:Advances in Primatology: Primate Locomotion,Jenkins,F. A.,Jr. (ed.), Academic Press, N. Y., pp. 223–259.

    Google Scholar 

  • Taylor, J. R. &H. McCarley, 1963. Vertical distribution ofPeromyscus leucopus andP. gossipinus under experimental conditions.Southwest Nat. 8: 107–108.

    Google Scholar 

  • Verts, B. J., 1957. The population and distribution of two species ofPeromyscus on some Illinois strip-mined land.J. Mamm. 38: 53–59.

    Google Scholar 

  • Walker, E. P., 1964.Mammals of the World, 2 vols. The Johns Hopkins Press, Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Also ofThe Institute of Applied Biology, New York.

About this article

Cite this article

Riesenfeld, A. Metatarsal robusticity in primates and a few other plantigrade mammals. Primates 15, 1–25 (1974). https://doi.org/10.1007/BF01749589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01749589

Keywords

Navigation