Skip to main content
Log in

The role of endogenous noradrenaline in the beta-blocker withdrawal phenomenon — studies with culture heart cells

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

An in vitro model to evaluate the role of endogenous noradrenaline in the beta-blocker withdrawal phenomenon is described: Beating chicken heart muscle cells (5000 beta1-adrenoceptors/cell) and heart nonmuscle cells (3000 beta2-adrenoceptors/cell) were cultured in serum-free, hormone-supplemented medium. Basal state, subtype selective down-regulation of beta-adrenoceptors by endogenous noradrenaline (decrease in receptor number, beta1 more than beta2) was simulated by addition of noradrenaline to the culture medium; chronic beta-blockade was simulated by exposure of the cells for 3 days to various betablockers (propranolol, no ISA; timolol, slight ISA; pindolol, strong ISA). Beta-blocker withdrawal phenomenon — increased response in isoproterenol-induced cAMP production and positive inotropy — is correlated with the increase in the number of beta-adrenoceptors after withdrawal of the drugs. Propranolol induces a withdrawal phenomenon at every degree of noradrenaline-induced basal state down-regulation of beta-adrenoceptors; in contrast, a withdrawal phenomenon by pindolol is only seen at a higher degree of beta-adrenoceptor down-regulation.

In the presence of physiological noradrenaline concentrations pindolol affects beta-adrenoceptor subtypes in a qualitatively different manner: the number of beta1-adrenoceptors is increased, the number of beta2-adrenoceptors is decreased. This finding demonstrates that the intrinsic sympathomimetic activity of nonselective beta-blockers can manifest itself only if the receptors are not strongly down-regulated. As beta2-adrenoceptors are present in a much less down-regulated state than beta1, ISA mainly acts on beta2-adrenoceptor subtype, thus, presenting a beta2-“pseudo-selectivity” of ISA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(−)CGP 12177:

(−)(4-3-Tert-butylamino-2-hydroxypropoxy)-benzimidazol-2-one-hydrochloride

HEPES:

N-2-Hydroxyethylpiperazine-N'-2-ethanesulphonic acid

IBMX:

3-Isobutyl-1-methyl-xanthine

ISA:

Intrinsic sympathomimetic activity

References

  1. Abrahamsson T (1986) Theβ 1-andβ 2-adrenoceptor stimulatory effects of alprenolol, oxprenolol and pindolol: a study in the isolated right atrium and uterus of the rat. Br J Pharmacol 87:657–664

    Google Scholar 

  2. Bobik A, Campbell JH, Carson V, Campbell GR (1981) Mechanism of isoprenaline induced refractoriness of theβ-adrenoceptor-adenylate cyclase system in chick embryo cardiac cells. J Cardiovasc Pharmacol 3:541–553

    Google Scholar 

  3. Brodde OE, Karad K, Zerkowski HR, Rohm N, Reidemeister JC (1983) Coexistence ofβ 1- andβ 2-adrenoceptors in human right atrium. Circ Res 53:752–758

    Google Scholar 

  4. Brodde OE, Daul A, Stuka N, O'Hara N, Borchard U (1985) Effects ofβ-adrenoceptor antagonist administration onβ 2-adrenoceptor density in human lymphocytes. Naunyn-Schmiedeberg's Arch Pharmacol 328:417–422

    Google Scholar 

  5. Brodde OE, Kretsch R, Ikezono K, Zerkowski HR, Reidemeister JC (1986) Humanβ-adrenoceptors: relation of myocardial and lymphocyteβ-adrenoceptor density. Science 231:1584–1585

    Google Scholar 

  6. Buxton ILO, Brunton LL (1985) Direct analysis ofβ-adrenergic receptor subtypes on intact adult ventricular myocytes of the rat. Circ Res 56:126–132

    Google Scholar 

  7. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Google Scholar 

  8. Clark BJ (1984) Pharmacological analysis of the intrinsic sympathomimetic activity of pindolol: evidence for selectiveβ 2-adrenoceptor stimulation. Triangle 23:33–41

    Google Scholar 

  9. Cramb G, Griffiths NM, Aiton JF, Simmons NL (1984) Biochemical and physiological adaptation to chronic propranolol treatment in the rat. Biochem Pharmacol 33:1969–1976

    Google Scholar 

  10. Fraser J, Nadenau J, Robertson D, Wood AJJ (1981) Regulation of human leukocyte beta receptors by endogenous catecholamines. J Clin Invest 67:1774–1784

    Google Scholar 

  11. Frishmann WH, Charlap S, Kostis JB (1984) Clinical significance of intrinsic sympathomimetic activity in beta-adrenoceptor blocking drugs. In: Kostis JB and De Felice EA (eds) Beta-blockers in the treatment of cardiovascular disease. Raven Press, New York, pp 253–274

    Google Scholar 

  12. Karliner JS, Simpson PC, Honbo N, Woloszyn W (1986) Mechanisms and time course of beta1 adrenoceptor desensitisation in mammalian cardiac myocytes. Cardiovasc Res 20:221–228

    Google Scholar 

  13. Krämer B, Kübler W (1984) Absetzphänomene nach chronischerβ-Blockade. Dtsch Med Wochenschr 109:465–471

    Google Scholar 

  14. Lau YH, Robinson RB, Rosen MR, Bilezikian JP (1980) Subclassification ofβ-adrenergic receptors in cultured rat cardiac myoblasts and fibroblasts. Circ Res 47:41–48

    Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  16. Marsh JD, Smith TW (1984) Receptors forβ-adrenergic agonists in cultured chick ventricular cells. Mol Pharmacol 27:10–18

    Google Scholar 

  17. Marsh JD, Barry WH, Smith TW (1982) Desensitization to the inotropic effect of isoproterenol in cultured ventricular cells. J Pharmacol Exp Ther 223:60–67

    Google Scholar 

  18. Marsh JD, Lachance D, Kim D (1985) Mechanisms ofβ-adrenergic receptor regulation in cultured chick heart cells. Circ Res 57:171–181

    Google Scholar 

  19. Marvin WJ, Robinson RB, Hermsmeyer K (1979) Correlation of function and morphology of neonatal and embryonic chick cultured cardiac and vascular muscle cells. Circ Res 45:528–540

    Google Scholar 

  20. Middeke M (1986)β-Adrenozeptoren bei der essentiellen Hypertonie und unter antihypertensiver Therapie. In: Schölmerich P and Holtmeier HJ (eds) Kardiovaskuläre Rezeptoren. Neue pharmakologische und klinische Aspekte Georg Thieme, Stuttgart, New York, pp 156–160

    Google Scholar 

  21. Molinoff PB, Aarons RD (1983) Effects of drugs onβ-adrenergic receptors on human lymphocytes. J Cardiovasc Pharmacol 5:63–67

    Google Scholar 

  22. Nattel S, Rangno RE, Van Loon G (1979) Mechanism of propranolol withdrawal phenomena. Circulation 59:1158–1164

    Google Scholar 

  23. Pluto R, Bürger P, Weicker H (1986) Die physiologische Variabilität der Plasma-Katecholamine. Klin Wochenschr 64:625–632

    Google Scholar 

  24. Portenier M, Hertel C, Müller P, Staehelin M (1984) Some unique properties of CGP 12177. J Recept Res 4:103–111

    Google Scholar 

  25. Porzig H, Becker C, Reuter H (1982) Competitive and non-competitive interactions between specific ligands and beta-adrenoceptors in living cardiac cells. Naunyn Schmiedeberg's Arch Pharmacol 321:89–99

    Google Scholar 

  26. Pritchard BNC, Tomlinson B, Walden RJ, Bhattacharjee P (1983) Theβ-adrenergic blockade withdrawal phenome-non. J Cardiovasc Pharmacol 5:56–62

    Google Scholar 

  27. Rangno RE (1984) Beta blocker withdrawal syndrome. In: Kostis JB and De Felice EA (eds) Beta-blockers in the treatment of cardiovascular disease. Raven Press, New York, pp 275–300

    Google Scholar 

  28. Reithmann C, Thomschke A, Werdan K (1986) Beta-Blocker Absetzphänomene in Herzmuskelzellkulturen. Z Kardiol 75 [Suppl I]:40

    Google Scholar 

  29. Salomon Y, Londos C, Rodbell M (1974) A highly sensitive adenylate cyclase assay. Anal Biochem 58:541–548

    Google Scholar 

  30. Scatchard G (1949) The attraction of protein for small molecules and ions. Ann NY Acad Sci 51:660–672

    Google Scholar 

  31. Sokoloff NM, Spielman SR, Greenspan AM, Rae AP, Porter RS, Lowenthal DT, Hakki AH, Iskandrian AS, Kay HR, Horowitz LN (1986) Plasma norepinephrine in exercise-induced ventricular tachycardia. J Am Coll Cardiol 8:11–17

    Google Scholar 

  32. Staehelin M, Simons P, Jaeggi K, Wigger N (1983) CGP 12177. A hydrophilicβ-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J Biol Chem 258:3496–3502

    Google Scholar 

  33. Stene-Larsen G, Ask JA, Helle KB, Fin R (1986) Activation of cardiac beta2 adrenoceptors in the human heart. Am J Cardiol 57:7F-10F

    Google Scholar 

  34. Stiles GL, Caron MG, Lefkowitz RJ (1984)β-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 64:661–743

    Google Scholar 

  35. Szecsi E, Kohlschutter S, Schiess W, Lang E (1982) Abrupt withdrawal of pindolol or metoprolol after chronic therapy. Br J Klin Pharmacol 13:353S-357S

    Google Scholar 

  36. Tovey KC, Oldham KG, Whelan JAM (1974) A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin Chem Acta 56:221–234

    Google Scholar 

  37. Weiner N (1985) Drugs that inhibit adrenergic nerves and block adrenergic receptors. In: Goodmann LS and Gilmans A (eds) The pharmacological basis of therapeutics, pp 181–214

  38. Werdan K, Bauriedel G, Bozsik M, Krawietz W, Erdmann E (1980) Effects of vanadate in cultured rat heart muscle cells. Vanadate transport, intracellular binding and vanadate-induced changes in beating and in active cation flux. Biochim Biophys Acta 597:364–383

    Google Scholar 

  39. Werdan K, Bauriedel G, Fischer B, Krawietz W, Erdmann E, Schmitz W, Scholz H (1982) Stimulatory (insulin-mimetic) and inhibitory (oubain-like) action of vanadate on potassium uptake and cellular sodium and potassium in heart cells in culture. Biochim Biophys Acta 687:79–93

    Google Scholar 

  40. Werdan K, Wagenknecht B, Zwißler B, Brown L, Krawietz W, Erdmann E (1984) Cardiac glycoside receptors in cultured heart cells — I. Characterization of one single class of high affinty receptors in heart muscle cells from chick embryos. Biochem Pharmacol 33:55–70

    Google Scholar 

  41. Werdan K, Wagenknecht B, Zwißler B, Brown L, Krawietz W, Erdmann E (1984) Cardiac glycoside receptors in cultured heart cells — II. Characterization of a high affinity and low affinity binding site in heart muscle cells from neonatal rats. Biochem Pharmacol 33:1873–1886

    Google Scholar 

  42. Werdan K, Reithmann C, Erdmann E (1985) Cardiac glycoside tolerance in cultured chicken heart muscle cells — a dose-dependent phenomenon. Klin Wochenschr 63:1253–1264

    Google Scholar 

  43. Westfall DP (1982) Adrenoceptor antagonists. In: Craig CR and Stitzel RE (eds) Modern pharmacology. Little, Brown, Boston, pp 141–156

    Google Scholar 

  44. Zerkowski HR, Ikezono K, Rohm N, Reidemeister JC, Brodde OE (1986) Human myocardialβ-adrenoceptors: demonstration of bothβ 1-andβ 2-adrenoceptors mediating contractile responses toβ-agonists on the isolated right atrium. Naunyn-Schmiedeberg's Arch Pharmacol 332:142–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reithmann, C., Thomschke, A. & Werdan, K. The role of endogenous noradrenaline in the beta-blocker withdrawal phenomenon — studies with culture heart cells. Klin Wochenschr 65, 308–316 (1987). https://doi.org/10.1007/BF01745384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01745384

Key words

Navigation