Skip to main content
Log in

Intraluminal real-time ultrasonic imaging: Clinical perspectives

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Conclusion

Intravascular, real-time, high-resolution echography is an exciting new development. It produces circumferential images of the artery segment of interest and allows measurement of lumen dimensions, wall thickness and extent of wall disease. This unprecedented diagnostic potential opens new horizons for clinical research and practical applications are rapidly emerging. It can be used to characterise and quantify the degree of arterial

Table 3. Future perspectives

  • Combination with ablation techniques

  • Combination with pressure measurement

  • Combination with Doppler velocimetry

  • Three-dimensional reconstruction

  • Tissue characterisation

  • Forward (down-stream) imaging

disease, to study its natural history, and to grade the effects of pharmacologic interventions. It will become a major adjunct to second-generation angioplasty procedures, as a guidance tool and for the immediate evaluation of results, since it is more easy to use and provides unique information much faster than other imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher LD, Judkins MP, Lesperance J, et al. Reproducibility of coronary arteriographic reading in the coronary artery surgery study (CASS). Cathet Cardiovasc Diag 1982; 8: 565–75.

    Google Scholar 

  2. Siegel RJ, Swan K, Edwalds G, et al. Limitations of postmortem assessment of human coronary artery size and luminal narrowing: differential effects of tissue fixation and processing on vessels with different degrees of atherosclerosis. J Am Coll Cardiol 1985; 5: 342–6.

    Google Scholar 

  3. Pignoli P, Tremoli HE, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurements with ultrasound imaging. Circulation 1986; 74: 1399–406.

    Google Scholar 

  4. Blankenhorn DH, Chin HP, Conover DJ, et al. Ultrasound observation on pulsation in human carotid artery lesions. Ultrasound in Med & Biol 1988; 14, 7: 583–7.

    Google Scholar 

  5. Taams MA, Gussenhoven EJ, Cornel JH, et al. Detection of left coronary artery stenosis by transoesophageal echocardiography. Eur Heart J 1988; 9: 1162–66.

    Google Scholar 

  6. McPherson DD, Hiratzka LF, Lamberth WC, et al. Delineation of the extent of coronary atherosclerosis by highfrequency epicardial. N Engl J Med 1987; 316: 304–9.

    Google Scholar 

  7. Forrester JS, Litvack F, Grundfest W, et al. A Perspective of coronary disease seen through the arteries of living man. Circulation 1987; 75: 505.

    Google Scholar 

  8. Forrester JS, Litvack F, Grundfest W, et al. Cardiac angioscopy in acute ischemic syndromes. Am J Card Imaging 1988; 2: 178–84.

    Google Scholar 

  9. Wild JJ, Reid JM. Progress in techniques of soft tissue examination by 15 MC pulsed ultrasound. In: Kelly E (ed) Ultrasound in Medicine and Biology, Washington, American Institute of Biological Sciences, 1950; p. 30.

    Google Scholar 

  10. Cieszynski T. Intracardiac method for the investigation of structure of the heart with the aid of ultrasonics. Arch Immun Ter Dosw 1960; 8: 551–7.

    Google Scholar 

  11. Kimoto S, Omoto R, Tsunemoto M, et al. Ultrasonic tomography of the liver and detection of heart atrial septal defect with the aid of ultrasonic intravenous probes. Ultrasonics 1964; 2: 82–6.

    Google Scholar 

  12. Mallery JA, Gregory K, Morcos NC, et al. Evaluation of an ultrasound balloon dilatation imaging catheter. Circulation 1987; 76: IV-371 (Abstr).

    Google Scholar 

  13. Yock PG, Linker DT, Thapliyal HV, et al. Real-time, two-dimensional catheter ultrasound: a new technique for high-resolution intravascular imaging. J Am Coll Cardiol 1988; 11: 130 A (abstr).

    Google Scholar 

  14. Bom N, Lancee CT, Slager CJ, et al. Ein Weg zur intraluminaren Echoarteriographie. Ultraschall 1987; 8: 233–6.

    Google Scholar 

  15. Pandian NG, Kreis A, Brockway B, et al. Ultrasound angioscopy: real-time, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol 1988; 62: 493–4.

    Google Scholar 

  16. Roelandt JR, Bom N, Serruys PW, et al. Intravascular high-resolution real-time cross-sectional echocardiography. Echocardiography 1989; 6: 1–8.

    Google Scholar 

  17. Hodgson J, Eberle MJ, Savakus MD, et al. Validation of a new real time percutaneous intravascular ultrasound imaging catheter. Circulation 1988; 78: II-21 (abstr).

    Google Scholar 

  18. Mallery JA, Griffith J, Gessert J, et al. Intravascular ultrasound imaging catheter assessment of normal and atherosclerotic arterial wall thickness. J Am Coll Cardiol 1988; II: 22A (abstr). 18.

    Google Scholar 

  19. Gussenhoven WJ, Bom N, van Egmond FC, et al. A high frequency ultrasound catheter for intravascular imaging. Eur Heart J 1988; 9: 802 (abstr).

    Google Scholar 

  20. Pandian N, Kreis A, O'Donnell T, et al. Intraluminal twodimensional ultrasound angioscopic quantitation of arterial stenosis: comparison with external high frequency ultrasound imaging and anatomy. J Am Coll Cardiol 1989; 13: 5A (abstr).

    Google Scholar 

  21. Pandian N, Kreis A, Brockway B, et al. Detection of intravascular thrombus by high frequency intraluminal ultrasound angioscopy: in vitro and in vivo studies. J Am Coll Cardiol 1989; 13: 5A (abstr).

    Google Scholar 

  22. Mallery JA, Mahon D, Griffith J, et al. Intravascular ultrasound visualization of atheroma plaque removal by atherectomy. J Am Coll Cardiol 1989; 13: 222A (abstr).

    Google Scholar 

  23. Roelandt JR, Serruys PW, Bom N, et al. Intravascular real-time high resolution two-dimensional echocardiography. J Am Coll Cardiol 1989; 13: 4A (abstr).

    Google Scholar 

  24. Bartorelli AL, Potkin BN, Almagor Y, et al. Intravascular ultrasound imaging of atherosclerotic coronary arteries: an in vitro validation study. J Am Coll Cardiol 1989; 13: 4A (abstr).

    Google Scholar 

  25. Gussenhoven WJ, Essed CE, Lancee CT, et al. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol (in press).

  26. Pandian N, Kreis A, Brockway B, et al. Intraluminal ultrasound angioscopic detection of arterial dissection and intimal flaps: in vitro and vivo studies. Circulation 1988; 78: II-21 (abstr).

    Google Scholar 

  27. Mallery JA, Tobis JM, Gessert J, et al. Evaluation of an intravascular ultrasound imaging catheter in porcine peripheral and coronary arteries in vivo. Circulation 1988; 78: II-21 (abstr).

    Google Scholar 

  28. Yock PG, Johnson EL, Linker DT. Intravascular ultrasound: development and clinical potential. Am J Card Imaging 1988; 2: 185–93.

    Google Scholar 

  29. Mallery JA, Tobis JM, Gessert J, et al. Identification of tissue components in human atheroma by an intravascular ultrasound imaging catheter. Circulation 1988; 78, 4: II-22 (abstr).

    Google Scholar 

  30. Graham SP, Brands D, Savakus A, et al. Utility of an intravascular ultrasound imaging device for arterial wall definition and atherectomy guidance. J Am Coll Cardiol 1989; 13: 222A (abstr).

    Google Scholar 

  31. Yock P, Linker D, Seather D, et al. Intravascular twodimensional catheter ultrasound: initial clinical studies. Circulation 1988; 78: II-21 (abstr).

    Google Scholar 

  32. Meyer CR, Chiang EH, Fechner KP, et al. Feasibility of high-resolution intravascular ultrasonic imaging catheter. Radiology 1988; 168: 113–6.

    Google Scholar 

  33. Pandian N, Kreis A, Desnoyers M, et al. In vivo ultrasound angioscopy in humans and animals: intraluminal imaging of blood vessels using a new catheter-based high resolution ultrasound probe. Circulation 1988; 78: II-22 (abstr).

    Google Scholar 

  34. Hodgson J, Graham SP, Savakus A. Percutaneous intravascular ultrasound imaging in humans: initial peripheral and coronary studies. Proceedings 4th Intl Congress on Cardiac Doppler, Anaheim, 1989.

  35. Linker DT, Yock PG, Thapliyal HV, et al. In vitro analysis of back scattered amplitude from normal and diseased arteries using a new intraluminal ultrasonic catheter. J Am Coll Cardiol 1988; 11: 4A (abstr).

    Google Scholar 

  36. Martinelli MA, Aretz TH, Butterly J. Ultrasonic imaging of coronary arterial thickness and ultrasonic signature typing of internal abnormalities. In: Microsensors and Catheterbased Imaging Technology. Alan I. West (ed), Proc. SPIE 1988; 904: 110–5.

  37. McPherson DD, Ross AF, Moyers JR, et al. Can atherosclerotic coronaries vasodilate? An intraoperative high-frequency epicardial echocardiographic study. Circulation 1986; 74: II-468 (abstr).

    Google Scholar 

  38. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic arteries. N Engl J Med 1987; 316: 1371–5.

    Google Scholar 

  39. Armstrong ML, Heistad DD, Marcus ML, et al. Structural and hemodynamic responses of peripheral arteries of macaque monkeys to atherogenic diet. Atherosclerosis 1985; 5: 336–46.

    Google Scholar 

  40. Blankenhorn DH, Krausch DM. Reversal of atherosclerosis and sclerosis: the two components of atherosclerosis. Circulation 1989; 79: 1–7.

    Google Scholar 

  41. Levenson JA, Simon AC, Maarik BE, et al. Regional compliance of brachial artery and saline infusion in patients with arteriosclerosis obliteraus. Atherosclerosis 1985; 5: 80–7.

    Google Scholar 

  42. Bourassa MG, Alderman EL, Bertrand M, et al. Report of the joint ISFC/WHO Task force on coronary angioplasty. Circulation 1988; 78: 780–9.

    Google Scholar 

  43. Marcus M, Wright C, Doty D, et al. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res 1981; 49: 877–91.

    Google Scholar 

  44. Harrison DG, White CW, Hiratzka LF, et al. Can the significance of coronary stenosis be predicted by quantitative coronary angiography? Circulation 1981; 64: 160 (abstr).

    Google Scholar 

  45. White CW, Wright CW, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984; 310: 819–24.

    Google Scholar 

  46. Cole JS, Hartley CJ. The pulsed Doppler coronary artery catheter: preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 1977; 56: 18–25.

    Google Scholar 

  47. Serruys PW, Zijlstra F, Reiber JHC, et al. Assessment of coronary flow reserve during angioplasty using a Doppler tip balloon catheter. Comparison with digital subtraction cineangiography. J Interven Cardiol 1988; 1: 19–33.

    Google Scholar 

  48. Serruys PW, Julliere Y, Zijlstra F, et al. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as a guide for assessment of the functional result. Am J Cardiol 1988; 61: 253–59.

    Google Scholar 

  49. Hiratzka LF, McPherson DD, Lamberth WC, et al. Intraoperative evaluation of coronary artery bypass graft anastomoses with high-frequency epicardial echocardiography: experimental validation and initial patient studies. Circulation 1986; 73: 1199–205.

    Google Scholar 

  50. Doubilet P, Abrams HL. The cost of underutilization percutaneous transluminal angioplasty for peripheral vascular disease. N Engl J Med 1983; 310: 25–102.

    Google Scholar 

  51. Abela GS, Seeger JM, Barbieri, et al. Laser angioplasty with angioscopic guidance in humans. J Am Coll Cardiol 1986; 8: 184–92.

    Google Scholar 

  52. Reilly LM, Lusby RJ, Hughes L, et al. Carotid plaque histology using real-time ultrasonography. Clinical and therapeutic implications. Am J Surg 1983; 146: 188–93.

    Google Scholar 

  53. Aalkjaer C, Heagerty AM, Petersen KK, et al. Evidence for increased media thickness, increased neuronal amine uptake ana depressed excitation-contraction coupling in isolated resistance vessels from essential hypertensives. Circ Res 1987; 61: 181–6.

    Google Scholar 

  54. Owens GK. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension 1987; 9: 179–87.

    Google Scholar 

  55. Heldman D, Mallery J, Spear G, et al. Intravascular ultrasound imaging catheter accurately measures area of stenotic aortic valves in vitro. J Am Coll Cardiol 1983; 13, 2: 49A (abstr).

    Google Scholar 

  56. Wagenvoort CA. Morphologic changes in the intrapulmonary veins. Human Pathology 1970; 1: 205–13.

    Google Scholar 

  57. Valdes-Cruz L, Sahn DJ, Yock P, et al. Experimental animal investigations of the potential for new approaches to diagnostic cardiac imaging in infants and small premature infants from intracardiac and transesophageal approaches using a 20 MHz real time ultrasound imaging catheter. J Am Coll Cardiol 1989; 13, 2: 137A (abstr).

    Google Scholar 

  58. Bom N, Slager CJ, Van Egmond FC, et al. Intra-arterial ultrasonic imaging for recanalization by spark erosion. Ultrasound Med Biol 1988; 14: 257–61.

    Google Scholar 

  59. Freeman I, Isner JM, Gal D, et al. Ultrasonic angioplasty using a new flexible wire system. J Am Coll Cardiol 1989; 13, 2: 4A (abstr).

    Google Scholar 

  60. Kitney RI, Moura L, Straughan K, et al. Three dimensional solid modelling of arterial structures using ultrasound. Proc IEEE IXth Conf on Engng Med & Biol 1987; 400–13.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelandt, J., Serruys, P.W. Intraluminal real-time ultrasonic imaging: Clinical perspectives. Int J Cardiac Imag 4, 89–97 (1989). https://doi.org/10.1007/BF01745138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01745138

Keywords

Navigation