Skip to main content
Log in

The molecular evolution of cytochrome c in eukaryotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Using many more cytochrome sequences than previously available, we have confirmed: 1, the eukaryotic cytochromes c diverged from a common ancestor; 2, the ancestral eukaryotic cytochrome c was not greatly different in character from those present today; 3, fixations are non-randomly distributed among the codons, there being evidence for at least four classes of variability; 4, there are similar classes of variability when the data are considered according to the nucleotide position within the codon; 5, the number of covarions (concomitantly variable codons) in mammalian cytochrome c genes is about 12 and the same value has been obtained for dicotyledonous plants as well; 6, all of the hyper- and most highly variable codons are for external residues, nearly 60 per cent of the invariable codons are for internal residues and nearly half of the codons for internal residues are invariable; 7, the first nucleotide position of a codon is more likely and the second position less likely to fix mutations than would be expected on the basis of the number of ways that alternative amino acids can be reached; 8, the character of nucleotide replacements is enormously non-random, with G

A interchanges representing 42% of those observed in the first nucleotide position, but the observation does not stem from a bias in the DNA strand receiving the mutation, nor from the presence of a compositional equilibrium, nor from a bias in the frequency with which different nucleotides mutate, but rather from a bias in the acceptability of an alternative nucleotide as circumscribed by the functional acceptability of the new amino acid encoded; and 9, the unit evolutionary period is approximately 150 million years/observable (amino acid changing) nucleotide replacement/cytochrome c covarion in two diverging lines.

Wherever non-randomness has been observed, it has always been consistent with the consideration that an alternative amino acid at any location is more likely to be acceptable the more closely it resembles the present amino acid in its physico-chemical properties.

Finally, in no case did the a priori assumption of a biologically realistic phylogeny lead to any observations or conclusions that were in any way significantly different from those obtained when the phylogeny was based solely upon the sequences, proving that the earlier results were not a consequence of some internal circularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augusteyn, R.C. (1973). Biochim.Biophys.Acta 303, 1–7

    Google Scholar 

  • Augusteyn, R.C., McDowall, M.A., Webb, E.C., Zerner, B. (1972).Biochim.Biophys.Acta 257, 264–272

    Google Scholar 

  • Bahl, P.P., Smith, E.L. (1965). J.Biol.Chem. 240, 3585–3593

    Google Scholar 

  • Bitar, K., Vinogradov, S.N., Nolan, C., Weiss, L.J., Margoliash, E. (1972). Biochem.J. 129, 561–569

    Google Scholar 

  • Brown, R.H., Richardson, M., Boulter, D., Ramshaw, J.A.M., Jeffries, R.P.S. (1972). Biochem.J. 128, 971–974

    Google Scholar 

  • Chan, S.K. (1970). Biochim.Biophys.Acta 221, 497–501

    Google Scholar 

  • Chan, S.K., Margoliash, E. (1966). J.Biol.Chem. 241, 507–515

    Google Scholar 

  • Chan, S.K., Margoliash, E. (1966). J.Biol.Chem. 241, 335–348

    Google Scholar 

  • Chan, S.K., Tulloss, I. Margoliash, E. (1966). Biochemistry 5, 2586–2597

    Google Scholar 

  • Dayhoff, M.O. (1972). Atlas of protein sequence and structure, Vol. 5. Washington: Natl.Biomed.Res.Foundation

    Google Scholar 

  • Dickerson, R.E. (1971). J.Mol.Evol. 1, 26–45

    Google Scholar 

  • Dickerson, R.E., Tokano, T., Eisenberg, D., Kallai, O.B., Samson, L., Cooper, A., Margoliash, E. (1971). J.Biol.Chem. 246, 1511–1533

    Google Scholar 

  • Fitch, W.M. (1967). J.Mol.Biol. 26, 499–507

    Google Scholar 

  • Fitch, W.M. (1970). Syst.Zool. 19, 99–113

    Google Scholar 

  • Fitch, W.M. (1971a). Syst.Zool. 20, 406–416

    Google Scholar 

  • Fitch, W.M. (1971b). Biochem.Genet. 5, 231–241

    Google Scholar 

  • Fitch, W.M. (1972a). Haematologie und Bluttransfusion 10, 177–215

    Google Scholar 

  • Fitch, W.M. (1972b). Brookhaven Symp.in Biol. 23, 186–216

    Google Scholar 

  • Fitch, W.M. (1972c). Humangenetik 16, 67–69

    Google Scholar 

  • Fitch, W.M. (1973a). J.Mol.Evol. 2, 123–136

    Google Scholar 

  • Fitch, W.M. (1973b). J.Mol.Evol. 2, 181–186

    Google Scholar 

  • Fitch, W.M. (1975). In: Molecular study of biological evolution, F.J. Ayala, ed. Sunderland, Mass.: Sinauer Assoc.

    Google Scholar 

  • Fitch, W.M., Farris, J.S. (1974). J.Mol.Evol. 3, 263–278

    Google Scholar 

  • Fitch, W.M., Margoliash, E. (1967). Science 155, 279–284

    Google Scholar 

  • Fitch, W.M., Margoliash, E. (1970). In: Evolutionary biology, Steere, Dobzhansky, Hecht, eds., Vol. IV, pp. 67–109. New York: Appleton-Century-Crofts

    Google Scholar 

  • Fitch, W.M., Markowitz, E. (1970). Biochem.Genet. 4, 579–593

    Google Scholar 

  • Goldstone, A., Smith, E.L. (1966). J.Biol.Chem. 241, 4480–4486

    Google Scholar 

  • Goldstone, A., Smith, E.L. (1967). J.Biol.Chem. 242, 4702–4710

    Google Scholar 

  • Gürtler, L., Horstmann, H.J. (1970). Eur.J.Biochem. 12, 48–79

    Google Scholar 

  • Gürtler, L., Horstmann, H.J. (1971). FEBS Letters 18, 106–108

    Google Scholar 

  • Hartigan, J.A. (1973). Biometrics 29, 53–65

    Google Scholar 

  • Heller, J., Smith, E.L. (1966). J.Biol.Chem. 241, 3165–3180

    Google Scholar 

  • Holmquist, R. (1972). J.Mol.Evol. 1, 211–222

    Google Scholar 

  • Kimura, A. (1968). Nature 217, 624–626

    Google Scholar 

  • Kreil, G. (1963). Z.Physiol.Chem. 334, 154–166

    Google Scholar 

  • Langley, C.H., Fitch, W.M. (1973). In: Genetic structure of populations, N.E. Morton, ed., pp. 246–262. Honolulu: Univ.Press of Hawaii

    Google Scholar 

  • Langley, C.H., Fitch, W.M. (1974). J.Mol.Evol. 3, 161–177

    Google Scholar 

  • Lederer, F. (1972). Eur.J.Biochem. 31, 144–147

    Google Scholar 

  • Lederer, F., Simon, A.M., Verdiere, J. (1972). Biochem.Biophys.Res.Comm. 47, 55–58

    Google Scholar 

  • Lehmann, H., Carrell, R.W. (1969). Brit.Med.Bull. 25, 14–23

    Google Scholar 

  • Lin, D.K., Niece, R.L., Fitch, W.M. (1973). Nature 241, 533–535

    Google Scholar 

  • Margoliash, E., Fitch, W.M. (1968). N.Y.Acad.Sci. 151, 359–381

    Google Scholar 

  • Margoliash, E., Fitch, W.M., Markowitz, E., Dickerson, R.E. (1972). In: Oxidation-reduction enzymes, A. Ehrenberg, ed., pp. 5–17. Stockholm: Wirksel

    Google Scholar 

  • Margoliash, E., Smith, E. (1965). In: Evolving genes and proteins, H.J. Vogel, ed., pp. 221–242. New York: Academic Press

    Google Scholar 

  • Margoliash, E., Smith, E.L., Kreil, G., Tuppy, H. (1961). Nature 192, 1121–1127

    Google Scholar 

  • Markowitz, E. (1970). Biochem.Genet. 4, 595–601

    Google Scholar 

  • Matsubara, H., Smith, E.L. (1963). J.Biol.Chem. 238, 2732–2753

    Google Scholar 

  • McDowell, M.A., Smith, E.L. (1965). J.Biol.Chem. 240, 4635–4647

    Google Scholar 

  • Morgan, W.T., Hensley, C.P., Jr., Riehm, J.P. (1972). J.Biol.Chem. 247, 6555–6565

    Google Scholar 

  • Nakashima, T., Higan, H., Matsubara, H., Benson, A., Yasunobu, K.T. (1966). J.Biol.Chem. 241, 1166–1177

    Google Scholar 

  • Nakayama, T., Titani, K., Narita, K. (1971). J.Biochem.(Tokyo) 70, 311–326

    Google Scholar 

  • Narita, K., Titani, K. (1968). J.Biochem. (Tokyo) 63, 226–241

    Google Scholar 

  • Narita, K., Titani, K. (1969). J.Biochem. (Tokyo) 65, 259–267

    Google Scholar 

  • Needleman, S.B., Margoliash, E. (1966). J.Biol.Chem. 241, 853–863

    Google Scholar 

  • Nolan, C., Fitch, W.M., Uzzell, T., Weiss, L.J., Margoliash, E. (1973). Biochemistry 12, 4052–4060

    Google Scholar 

  • Nolan, C., Margoliash, E. (1966). J.Biol.Chem. 241, 1049–1059

    Google Scholar 

  • Nolan, C., Margoliash, E. (1968). Ann.Rev.Biochem. 37, 727–789

    Google Scholar 

  • Ohta, T. (1974). Nature 252, 351–354

    Google Scholar 

  • Pettigrew, G.W. (1972). Fed.Eur.Biochem.Soc.Lett. 22, 64–66

    Google Scholar 

  • Pettigrew, G.W. (1973). Nature 241, 531–533

    Google Scholar 

  • Ramshaw, J.A.M., Thompson, E.W., Boulter, D. (1970). Biochem.J. 119, 535–539

    Google Scholar 

  • Ramshaw, J.A.M., Richardson, M., Boulter, D. (1971). Eur.J.Biochem. 23, 475–583

    Google Scholar 

  • Richardson, M., Ramshaw, J.A.M., Boulter, D. (1971). Biochim.Biophys.Acta 251, 331–333

    Google Scholar 

  • Rothfus, J.A., Smith, E.L. (1965). J.Biol.Chem. 240, 4277–4283

    Google Scholar 

  • Sokolovsky, M., Moldovan, M. (1972). Biochem.J. 11, 145–149

    Google Scholar 

  • Stevens, F., Glazer, A.N., Smith, E.L. (1967). J.Biol.Chem. 242, 2764–2779

    Google Scholar 

  • Stewart, J.W., Margoliash, E. (1965).Can.J.Biochem. 43, 1187–1206

    Google Scholar 

  • Sugeno, K., Narita, K., Titani, K. (1971). J.Biochem.(Tokyo) 70, 659–682

    Google Scholar 

  • Thompson, E.W., Laycock, M.V., Ramshaw, J.A.M., Boulter, D. (1970). Biochem.J. 117, 183–192

    Google Scholar 

  • Thompson, E.W., Richardson, M., Boulter, D. (1970). Biochem.J. 121, 439–446

    Google Scholar 

  • Thompson, E.W., Richardson, M., Boulter, D. (1971). Biochem.J. 124, 779–781

    Google Scholar 

  • Thompson, E.W., Richardson, M., Boulter, D. (1971). Biochem.J. 124, 783–785

    Google Scholar 

  • Thompson, E.W., Notton, B.A., Richardson, M., Boulter, D. (1971). Biochem.J. 124, 787–791

    Google Scholar 

  • Uzzell, T., Corbin, K.W. (1971). Science 172, 1089–1096

    Google Scholar 

  • Vogel, F. (1969). Humangenetik 8, 1–26

    Google Scholar 

  • Vogel, F. (1972a). J.Mol.Evol. 1, 334–367

    Google Scholar 

  • Vogel, F. (1972b). Humangenetik 16, 71–76

    Google Scholar 

  • Vogel, H., Derancourt, J., Zuckerkandl, E. (1971). In: Peptides, pp. 339–346. Amsterdam: North-Holland

    Google Scholar 

  • Zuckerkandl, E., Derancourt, J., Vogel, H. (1971). J.Mol.Biol. 59, 473–490

    Google Scholar 

  • Zuckerkandl, E., Pauling, L. (1965). In: Evolving genes and proteins, H.J. Vogel, ed., pp. 97–166. New York: Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitch, W.M. The molecular evolution of cytochrome c in eukaryotes. J Mol Evol 8, 13–40 (1976). https://doi.org/10.1007/BF01738880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738880

Key words

Navigation