Skip to main content
Log in

Involvement of weak binding crossbridges in force production in muscle

  • News and Views
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams, S., DasGupta, G., Chalovich, J. M. &Reisler, E. (1990) Immunochemical evidence for the binding of caldesmon to the NH2-terminal segment of actin.J. Biol. Chem. 265, 19652–7.

    PubMed  Google Scholar 

  • Bartegi, A., Fattoum., A. &Kassab, R. (1990) Crosslinking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin.J. Biol. Chem. 265, 2231–7.

    PubMed  Google Scholar 

  • Brenner, B. (1988) Effect of Ca2+ on crossbridge turnover kinetics in skinned single rabbit psoas fibres: implications for regulation of muscle contraction.Proc. Natn. Acad. Sci. USA 85, 3265–9.

    Google Scholar 

  • Brenner, B., Schoenberg, M., Chalovich, J. M., Greene, L. E. &Eisenberg, E. (1982) Evidence for crossbridge attachment in relaxed muscle at low ionic strength.Proc. Natn. Acad. Sci. USA 79, 7288–91.

    Google Scholar 

  • Brenner, B., Yu, L. C., Greene, L. C., Eisenberg, E. &Schoenberg, M. (1986) Ca2+-sensitive crossbridge dissociation in the presence of magnesium pyrophosphate in skinned rabbit psoas fibers.Biophys. J. 50, 1101–8.

    PubMed  Google Scholar 

  • Brenner, B., Yu, L. C. &Chalovich, J. M. (1991) Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon.Proc. Natn Acad. Sci. USA 88, 5739–43.

    Google Scholar 

  • Chalovich, J. M. &Eisenberg, E. (1982) Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin.J. Biol. Chem. 257, 2432–7.

    PubMed  Google Scholar 

  • Chalovich, J. M., Chock, P. B. &Eisenberg, E. (1981) Mechanism of action of troponin-tropomyosin: inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin.J. Biol. Chem. 256, 575–8.

    PubMed  Google Scholar 

  • Chalovich, J. M., Cornelius, P. &Benson, C. E. (1987) Caldesmon inhibits skeletal actomyosin subfragment-1 ATPase activity and the binding of myosin subfragment-1 to actin.J. Biol. Chem. 262, 5711–6.

    PubMed  Google Scholar 

  • Chalovich, J. M., Greene, L. E. &Eisenberg, E. (1983) Crosslinked myosin subfragment-1: a stable analogue of the subfragment-1-ATP complex.Proc. Natn Acad. Sci. USA 80, 4909–13.

    Google Scholar 

  • Eisenberg, E., Dobkin, L. &Kielley, W. (1972) Heavy meromyosin: evidence for a refractory state unable to bind to actin in the presence of ATP.Proc. Natn Acad. Sci. USA 69, 667–71.

    Google Scholar 

  • Greene, L. E. &Eisenberg, E. (1980a) Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex.Proc. Natn Acad. Sci. USA 77, 2616–20.

    Google Scholar 

  • Greene, L. E. &Eisenberg, E. (1980b) Dissociation of the actin-subfragment-1 complex by adenyl-5′-yl imidodiphosphate, ADP and PPi.J. Biol Chem. 255, 543–8.

    PubMed  Google Scholar 

  • Haselgrove, J. C. (1973) X-ray evidence for a conformation change in the actin containing filaments of vertebrate striated muscle.Cold Spring Harbor Symp. Quant. Biol. 37, 341–52.

    Google Scholar 

  • Hemric, M. E. &Chalovich, J. M. (1988) Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin.J. Biol. Chem. 263, 1878–85.

    PubMed  Google Scholar 

  • Hill, T. L. (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle.Prog. Biophys. Molec. Biol. 28, 267–340.

    Google Scholar 

  • Horiuchi, K. Y. &Chacko, S. (1989) Caldesmon inhibits the cooperative turning-on of the smooth muscle heavy meromyosin by tropomyosin-actin.Biochemistry 28, 9111–6.

    PubMed  Google Scholar 

  • Horiuchi, K. Y., Samuel, M. &Chacko, S. (1991) Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/calmodulin binding domain of caldesmon.Biochemistry 30, 712–17.

    PubMed  Google Scholar 

  • Huxley, H. E. (1973) Structural changes in the actin and myosin containing filaments during contraction.Cold Spring Harbor Symp. Quant. Biol. 37, 361–76.

    Google Scholar 

  • Ikebe, M. &Reardon, S. (1988) Binding of caldesmon to smooth muscle myosin.J. Biol. Chem. 263, 3055–8.

    PubMed  Google Scholar 

  • Kraft, T. H., Chalovich, J. M., Yu, L. C. &Brenner, B. (1991) Weak crossbridge binding is essential for force generation. Evidence at near physiological conditions.Biophys. J. 59, 375a.

    Google Scholar 

  • Levine, B. A., Moir, A. J. G., Audemard, E., Mornet, D., Patchell, V. B. &Perry, S. V. (1990) Structural study of gizzard caldesmon and its interaction with actin — binding involves residues of actin also recognized by myosin subfragment 1.Eur. J. Biochem. 193, 687–96.

    PubMed  Google Scholar 

  • Lymn, R. W. &Taylor, E. W. (1971) Mechanisms of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10, 4617–24.

    PubMed  Google Scholar 

  • Marston, S. (1988) Aorta caldesmon inhibits actin activation of thiophosphorylated heavy meromyosin Mg2+-ATPase activity by slowing the rate of product release.FEBS Lett. 238, 147–50.

    PubMed  Google Scholar 

  • Moody, C., Lehman, W. &Craig, R. (1990) Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments.J. Muscle Res. Cell Motil. 11, 176–85.

    PubMed  Google Scholar 

  • Owada, M. K., Hakura, A., Iida, K., Yahara, I., Sobue, K. &Kakiuchi, S. (1984) Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells.Proc. Natn Acad. Sci. USA 81, 3133–7.

    Google Scholar 

  • Parry, D. A. D. &Squire, J. M. (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles.J. Mol. Biol. 75, 33–55.

    PubMed  Google Scholar 

  • Riseman, V. M., Lynch, W. P., Neefsky, B. &Bretscher, A. (1989) The calmodulin and F-actin binding sites of smooth muscle caldesmon lie in the carboxyl-terminal domain whereas the molecular weight heterogeneity lies in the middle of the molecule.J. Biol. Chem. 264, 2869–75.

    PubMed  Google Scholar 

  • Sleep, J. A. &Hutton, R. L. (1978) Actin mediated release of ATP from myosin ATP-complex.Biochemistry 17, 5423–30.

    PubMed  Google Scholar 

  • Smith, C. W. J., Pritchard, K. &Marston, S. B. (1987) The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin.J. Biol. Chem. 262, 116–22.

    PubMed  Google Scholar 

  • Sobue, K., Muramoto, Y., Fujita, M. &Kakiuchi, S. (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin.Proc. Natn Acad. Sci. USA 78, 5652–5.

    Google Scholar 

  • Stein, L. A., Schwarz, R. P., Jr, Chock, P. B. &Eisenberg, E. (1979) Mechanism of actomyosin adenosine triphosphatase: evidence that adenosine 5′-triphosphate hydrolysis can occur without dissociation of the actomyosin complex.Biochemistry 18, 3895–909.

    PubMed  Google Scholar 

  • Velaz, L. &Chalovich, J. M. (1991) Functional properties of the C-terminal actin binding fragments of caldesmon.Biophys. J. 59, 219a.

    Google Scholar 

  • Verlaz, L., Hemric, M. E., Benson, C. E. &Chalovich, J. M. (1989) The binding of caldesmon to actin and its effect on the ATPase activity of soluble myosin subfragments in the presence and absence of tropomyosin.J. Biol. Chem. 264, 9602–10.

    PubMed  Google Scholar 

  • Velaz, L., Ingraham, R. H. &Chalovich, J. M. (1990) Dissociation of the effect of caldesmon on the ATPase activity and on the binding of smooth heavy meromyosin to actin by partial digestion of caldesmon.J. Biol. Chem. 265, 2929–34.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalovich, J.M., Yu, L.C. & Brenner, B. Involvement of weak binding crossbridges in force production in muscle. J Muscle Res Cell Motil 12, 503–506 (1991). https://doi.org/10.1007/BF01738438

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738438

Navigation