Skip to main content
Log in

Myosin heavy chain composition of single fibres and their origins and distribution in developing fascicles of sheep tibialis cranialis muscles

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The myosin heavy chain (MHC) composition of single muscle fibres in developing sheep tibialis cranialis muscles was examined immunohistochemically with monoclonal antibodies to MHC isozymes. Data were collected with conventional microscopy and computerized image analysis from embryonic day (E) 76 to postnatal day (PN) 20, and from adult animals. At E76, 23% of the young myofibres stained for slow-twitch MHC. The number of these fibres considerably exceeded the number of primary and secondary myotubes. By E100, smaller fibres, negative for slow-twitch MHC, encircled each fibre from the initial population to form rosettes. A second population of small fibres appeared in the unoccupied spaces between rosettes. Small fibres, whether belonging to rosettes or not, did not initially express slow-twitch MHC, expressing mainly neonatal myosin instead. These small fibres then diverged into three separate groups. In the first group most fibres transiently expressed adult fast myosin (maximal at E110–E120), but in the adult expressed slow myosin. This transformation to the slow MHC phenotype commenced at E110, was nearing completion by 20 postnatal days, and was responsible for approximately 60% of the adult slow twitch fibre population. In the other two groups expression of adult fast MHC was maintained, and in the adult they accounted for 14% (IIa MHC) and 17% (IIb MHC) of the total fibre numbers. We conclude that muscle fibre formation in this large muscle involves at least three generations of myotube. Secondary myotubes are generated on a framework of primary myotubes and both populations differentiate into the young myofibres which we observed at E76 to form rosettes. Tertiary myotubes, in turn, appear in the spaces between rosettes and along the borders of fascicles, using the outer fibres of rosettes as scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashmore, C. R., Robinson, D. W., Rattray, P. &Doerr, L. (1972) Biphasic development of muscle fibers in the fetal lamb.Expl Neurol. 37, 241–55.

    Google Scholar 

  • Bader, D., Masaki, T. &Fischman, D. A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesisin vivo andin vitro in chicken skeletal muscle.Dev. Biol. 95, 763–70.

    Google Scholar 

  • BÄr, A. &Pette, D. (1988) Three fast myosin heavy chains in adult rat skeletal muscle.FEBS Lett. 235, 153–5.

    PubMed  Google Scholar 

  • Bardeen, C. R. (1900) The development of the musculature of the body wall in the pig, including its histogenesis and its relations to the myotomes and to the skeletal and nervous apparatus.Johns Hopkins Hosp. Reports 9, 367–99.

    Google Scholar 

  • Brooke, M. H. &Kaiser, K. K. (1970) Three myosin adenosine triphosphate systems: the nature of their pH lability and sulfhydryl dependence.J. Histochem. Cytochem. 18, 670–2.

    PubMed  Google Scholar 

  • Condon, K., Silberstein, L., Blau, H. M. &Thompson, W. J. (1990) Development of muscle fibre types in the prenatal rat hindlimb.Dev. Biol. 138, 256–74.

    PubMed  Google Scholar 

  • Couteaux, R. (1941) Rechérches sur l'histogenèse du muscle strié des mammifères et al formation des plaques motrices.Bull. Biol. Franco Belg. 75, 101–39.

    Google Scholar 

  • Dimario, J., Buffinger, N., Yamada, S. &Strohman, R. C. (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscles.Science 244, 688–90.

    PubMed  Google Scholar 

  • Draeger, A., Weeds, A. G. &Fitzsimons, R. B. (1987) Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis.J. Neurol Sci. 81, 19–43.

    PubMed  Google Scholar 

  • Duxson, M. J. &Usson, Y. (1989) Cellular insertion of primary and secondary myotubes in embryonic rat muscles.Development 107, 243–51.

    PubMed  Google Scholar 

  • Duxson, M. J., Usson, Y. &Harris, A. J. (1989) The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies.Development 107, 743–50.

    PubMed  Google Scholar 

  • Ecob-Prince, M., Hill, M. &Brown, W. (1989) Immunocytochemical demonstration of myosin heavy chain expression in human muscle.J. Neurol. Sci. 91, 71–8.

    PubMed  Google Scholar 

  • English, A. W. &Weeks, O. I. (1987) An anatomical and functional analysis of cat biceps femoris and semitendinosis muscles.J. Morphol. 191, 161–75.

    PubMed  Google Scholar 

  • Gambke, B. &Rubinstein, N. A. (1984) A monoclonal antibody to the embryonic myosin heavy chain of rat skeletal muscle.J. Biol. Chem. 259, 12092–100.

    PubMed  Google Scholar 

  • Gans, C., Loeb, G. E. &De Vree, F. (1989) Architecture and consequent physiological properties of the semitendinosis muscle in domestic goats.J. Morphol. 199, 287–97.

    Google Scholar 

  • Gaunt, A. S. &Gans, C. (1990) Architecture of chicken muscles: short fibre patterns and their ontogeny.Proc. R. Soc. Lond. B 240, 351–62.

    PubMed  Google Scholar 

  • Guth, L. &Samaha, F. J. (1970) Procedure for the histochemical demonstration of actomyosin ATPase.Exp. Neurol. 28, 365–7.

    PubMed  Google Scholar 

  • Harris, A. J. (1981) Embryonic growth and innervation of rat skeletal muscles. I. Neural regulation of muscle fibre numbers.Phil. Trans. R. Soc. Lond. B 293, 257–77.

    Google Scholar 

  • Harris, A. J., Fitzsimons, R. B. &Mcewan, J. C. (1989a) Neural control of the sequence of expression of myosin heavy chain isoforms in foetal mammalian muscles.Development 107, 751–69.

    PubMed  Google Scholar 

  • Harris, A. J., Duxson, M. J., Fitzsimons, R. B. &Rieger, F. (1989b) Myonuclear birthdates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles.Development 107, 771–84.

    Google Scholar 

  • Hoh, J. F. Y. (1991) Myogenic regulation of mammalian skeletal muscle fibres.News Physiol. Sci. 6, 1–6.

    PubMed  Google Scholar 

  • Kelly, A. M. (1983) Emergence of specialization of skeletal muscles. InHandbook of Physiology, Section 10 (edited byPeachey, L. D.) pp. 507–37. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Kelly, A. M. &Zacks, S. I. (1969) The histogenesis of rat intercostal muscle.J. Cell Biol. 42, 135–53.

    PubMed  Google Scholar 

  • Loeb, G. E., Pratt, C. A., Chanaud, C. M. &Richmond, F. J. R. (1987) Distribution and innervation of short, interdigitated muscle fibres in parallel-fibered muscles of the cat hind-limb.J. Morphol. 191, 1–15.

    PubMed  Google Scholar 

  • Mclennan, I. S. (1983) Neural dependence and independence of myotube production in chicken hindlimb muscles.Dev. Biol. 98, 287–94.

    PubMed  Google Scholar 

  • Macqueen, J. B. (1967) Some methods of classification and analysis of multivariate observations.Proc. Vth Berkeley Symposium on Mathematical Statistics and Probability,1, 281–97.

    Google Scholar 

  • May, N. (1970)The Anatomy of the Sheep. A Dissection Manual. Brisbane: University of Queensland Press.

    Google Scholar 

  • Mayne, R. &Sanderson, R. D. C. (1985) The extracellular matrix of skeletal muscle.Coll. Relat. Res. 5, 449–68.

    PubMed  Google Scholar 

  • Moss, F. P. &Leblond, C. P. (1970) Nature of dividing nuclei in skeletal muscle of growing rats.J. Cell Biol. 44, 459–62.

    PubMed  Google Scholar 

  • Ontell, M. &Dunn, R. F. (1978) Neonatal muscle growth: a quantitative study.Am. J. Anat. 152, 539–56.

    PubMed  Google Scholar 

  • Ontell, M. &Kozeka, K. (1984) The organogenesis of murine striated muscle: a cytoarchitectural study.Am. J. Anat. 171, 133–48.

    PubMed  Google Scholar 

  • Patterson, H. D. &Thompson, R. (1971) Recovery of interblock information when block sizes are unequal.Biometrika 58, 545–54.

    Google Scholar 

  • Pernus, F. &Erzen, I. (1991) Arrangement of fibre types within fascicles of human vastus lateralis muscle.Muscle Nerve 14, 304–9.

    PubMed  Google Scholar 

  • Pette, D. &Vrbova, G. (1985) Neural control of phenotypic expression in mammalian muscle fibres.Muscle Nerve 81, 676–89.

    Google Scholar 

  • Richmond, F. J. R., McGillis, D. R. R. &Scott, D. A. (1985) Muscle-fibre compartmentalization in cat splenius muscles.J. Neurophysiol. 53, 868–85.

    PubMed  Google Scholar 

  • Ross, J. J., Duxson, M. J. &Harris, A. J. (1987) Formation of primary and secondary myotubes in rat lumbrical muscles.Development 100, 383–94.

    PubMed  Google Scholar 

  • Salmons, S. &Sreter, F. A. (1976) Significance of impulse activity in the transformation of skeletal muscle type.Nature 263, 30–4.

    PubMed  Google Scholar 

  • Salmons, S. &Henriksson, J. (1981) The adaptive response of skeletal muscle to increased use.Muscle Nerve 4, 94–105.

    PubMed  Google Scholar 

  • Schwann, T. (1847) InMicroscopical researches into the accordance in the structure and growth of animals and plants. pp. 129–41. London: Sydenham Society.

    Google Scholar 

  • Stockdale, F. E. &Miller, J. B. (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles.Dev. Biol. 123, 1–19.

    PubMed  Google Scholar 

  • Suzuki, A. &Cassens, R. G. (1983) A histochemical study of myofibre types in the serratus ventralis thoracis muscle of sheep during growth.J. Anim. Sci. 56, 1447–58.

    PubMed  Google Scholar 

  • Swatland, H. J. &Cassens, R. G. (1972) Muscle growth: the problem of muscle fibre with an intrafascicular termination.J. Anim. Sci. 36, 336–44.

    Google Scholar 

  • Swatland, H. J. &Cassens, R. G. (1973) Inhibition of muscle growth in fetal sheep.J. Agric. Sci. 80, 503–9.

    Google Scholar 

  • Tello, J. F. (1917) Genesis de las terminaciones nerviosas motrices y sensitivas.Trab. Lab. Invest. Biol. Univ. Madrid 15, 101–99.

    Google Scholar 

  • Turner, T. C. (1986) Cell-cell and cell-matrix interactions in the morphogenesis of skeletal muscle. InDevelopmental Biology, 3 (edited bySteinberg, M. S.) pp. 205–24. New York: Plenum Press.

    Google Scholar 

  • Vivarelli, E., Brown, W. E., Whaler R. G. &Cossu, G. (1988) The expression of slow myosin during mammalian somatogenesis and limb bud differentiation.J. Cell Biol. 107, 2191–7.

    PubMed  Google Scholar 

  • Whalen, R. G., Harris, J. B., Butler-Browne, G. S. &Sesodia, S. (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles.Dev. Biol. 141, 24–40.

    PubMed  Google Scholar 

  • Wigmore, P. M. &Stickland, N. C. (1983) Muscle development in large and small pig fetuses.J. Anat. 137, 235–45.

    Google Scholar 

  • Wilson, S. J., McEwan, J. C., Sheard, P. W. &Harris, A. J. (1992) Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle.J. Muscle Res. Cell Motil. 13, 534–50.

    PubMed  Google Scholar 

  • Wohlfart, G. (1937) über das Vorkommen verschiedener Arten von Muskelfasern in der Skelettmuskulatur des Menschen und einiger SÄugetiere.Acta Psychiat. (Kbh.) (Suppl.) 12, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, A., McEwan, J.C., Dodds, K.G. et al. Myosin heavy chain composition of single fibres and their origins and distribution in developing fascicles of sheep tibialis cranialis muscles. J Muscle Res Cell Motil 13, 551–572 (1992). https://doi.org/10.1007/BF01737997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01737997

Keywords

Navigation