Skip to main content
Log in

Genetic and biochemical implications of the endosymbiotic origin of the chloroplast

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The hypothesis stating that chloroplasts were derived from a photosynthetic procaryote is explored at a genetic and biochemical level. A transfer of genetic material from the endosymbiont to the nucleus of the host cell is proposed along with a corollary argument that the protein products of such transferred genes have remained specific to the chloroplast. This model provides an explanation for the presence of plastid-specific isozymes which are coded by nuclear DNA. It also suggests that the genome of the endosymbiont contributed the information necessary for the biosynthesis of carotenoids and the “essential” amino acids and the assimilation of nitrate-nitrogen and sulfate-sulfur. Animal cells lack these capabilities not because such were lost subsequent to the divergence of the plant and animal lines, but because animal cells did not become host to the appropriate symbionts. Additional implications of this thesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnes H (1978) Planta 140:185–192

    Google Scholar 

  • Anderson LE (1971) Biochem Biophys Acta 235:245–249

    Google Scholar 

  • Anderson LE, Advani VR (1970) Plant Physiol 45:583–585

    Google Scholar 

  • Anderson LE, Levin D (1970) Plant Physiol 46:819–820

    Google Scholar 

  • Armstrong JJ, Surzycki SJ, Moll B, Levine RP (1971) Biochemistry 10:692–701

    Google Scholar 

  • Baum JA, Scandalious JG (1980) Genetics 94:s7

    Google Scholar 

  • Beale SI (1978) Annu Rev Plant Physiol 29:95–120

    Google Scholar 

  • Bennett DC (1974) Nature 248:67–68

    Google Scholar 

  • Berlyn MB, Ahmed SI, Giles NH (1970) J Bacteriol 104:768–774

    Google Scholar 

  • Bickel H, Palme L, Schultz C (1978) Phytochemistry 17:119–124

    Google Scholar 

  • Blascheck W (1979) Plant Sci Lett 15:139–149

    Google Scholar 

  • Blobel G, Dobberstein B (1975) J Cell Biol 67:835–851

    Google Scholar 

  • Bonen L, Doolittle WF (1976) Nature 261:669–673

    Google Scholar 

  • Boulter D, Haslett BG, Peacock D, Ramshaw JAM, Scawen MD (1977) Chemistry, function, and evolution of plastocyanin. In: Northcote DH (ed) International review of biochemistry, plant biochemistry II, vol 13. University Park Press, Baltimore, p 1

    Google Scholar 

  • Bryan JK, Lissik EA, Matthews BF (1977) Plant Physiol 59:673–679

    Google Scholar 

  • Buchholz B, Reupke B, Bickel H, Schultz G (1979) Phytochemistry 18:1109–1111

    Google Scholar 

  • Bukowiecki AC, Anderson LE (1974) Plant Sci Lett 3:381–386

    Google Scholar 

  • Cerff R (1978) Plant Physiol 61:369–372

    Google Scholar 

  • Cerff R, Chambers SE (1979) J Biol Chem 254:6094–6098

    Google Scholar 

  • Chua N, Schmidt GW (1978) Proc Natl Acad Sci USA 75:6110–6114

    Google Scholar 

  • Clandinin MT, Cossins EA (1974) Phytochemistry 13:585–591

    Google Scholar 

  • Datko AH, Giovanelli J, Mudd SH (1974) J Biol Chem 249:1139–1145

    Google Scholar 

  • Ellis RJ, Hartley MR (1971) Nature New Biol 233:193–196

    Google Scholar 

  • Emes MJ, Fowler MW (1979) Planta 145:287–295

    Google Scholar 

  • Fankhauser H, Brunold C (1979) Plant Sci Lett 14:185–192

    Google Scholar 

  • Feierabend J, Brassel D (1977) Z Pflanzenphysiol 82:334–346

    Google Scholar 

  • Feierabend J, Schrader-Reichhardt U (1976) Planta 129:133–145

    Google Scholar 

  • Flavin M (1975) Methionine biosynthesis. In: Greenberg DM (ed) Metabolic pathways, vol VII, 3rd edn. Academic Press, New York, p 457

    Google Scholar 

  • Fitch WM, Margoliash E (1970) The usefulness of amino acid and nucleotide sequences in evolutionary studies. In: Dobzansky T, Hecht MK, Steere WC (eds) Evolutionary biology, vol 4. Appleton-Century-Crofts, New York, p 67

    Google Scholar 

  • Garland W, Dennis DT (1978) Plant Physiol 61s:96

    Google Scholar 

  • Hanson AD, Tully RE (1979) Planta 145:45–51

    Google Scholar 

  • Herbert M, Burkhard C, Schnarrenberger C (1979) Planta 145:95–104

    Google Scholar 

  • Herdman M, Stanier RY (1977) FEMS Microbiol Lett 1:7–11

    Google Scholar 

  • Huisman JG, Gebbink MG, Modderman P. Stegwee D (1977) Planta 137:97–105

    Google Scholar 

  • Huisman JG, Moorman AFM, Verkley FN (1978) Biochem Biophys Res Comm 82:1121–1131

    Google Scholar 

  • Ireland HM, Bradbeer JW (1971) Planta 96:254–261

    Google Scholar 

  • Ireland RJ, DeLuca V, Dennis DT (1978) Plant Physiol 61s:96

    Google Scholar 

  • Jensen RA (1976) Annu Rev Microbiol 30:409–425

    Google Scholar 

  • Kawashima N, Wildman SG (1972) Biochim Biophys Acta 262:42–49

    Google Scholar 

  • Kelly GJ, Latzko E (1979) Plant Physiol 60:290–294

    Google Scholar 

  • Kidder GW (1967) Nitrogen: distribution, nutrition, and metabolism. In: Florkin M, Scheer B (eds) Chemical zoology, vol 1. Academic Press, New York, p 93

    Google Scholar 

  • Kirk JTO, Tilney-Bassett RAE (1978) The Plastids. Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Koshiba T, Yoshida S (1976) Plant Cell Physiol 17:247–253

    Google Scholar 

  • Kung S (1977) Annu Rev Plant Physiol 28:401–437

    Google Scholar 

  • Leber B, Hemleben V (1979) Z Pflanzenphysiol 91:305–316

    Google Scholar 

  • Levine RP (1963) The electron transport system of photosynthesis deduced from experiments with mutants ofChlamydomas reinhardi. In: Publication 1145, National Academy of Sciences, Washington, p 158

    Google Scholar 

  • Lewin RA, Withers N (1975) Nature 256:735–737

    Google Scholar 

  • Lwoff A (1944) L'Evolution physiologique, étude des pertes de fonctions chez les microorganismes. Herman & Cie, Paris

    Google Scholar 

  • Mares D, Hawker J, Possingham J (1978) J Exp Bot 29:829–835

    Google Scholar 

  • Margulis L (1970) Origin of Eukaryotic Cells. Yale University Press, New Haven

    Google Scholar 

  • Meeks JC, Wolk CP, Lockau W, Schilling N, Shaffer PW, Chien W (1978) J Bacteriol 134:125–130

    Google Scholar 

  • Meller E, Harel E (1978) The pathway of 5-aminolevulinic acid synthesis inChlorella vulgaris and inFremyella diplosiphon. In: Akoyunoglou G et al. (eds) Chloroplast development. Elsevier, Amsterdam, p 51

    Google Scholar 

  • Mestichelli LJ, Gupta RN, Spenser ID (1979) J Biol Chem 254:640–647

    Google Scholar 

  • Miflin BJ, Lea PJ (1977) Annu Rev Plant Physiol 28:299–329

    Google Scholar 

  • Mills WR, Lea PJ, Miflin BJ (1978) Plant Physiol 61s:26

    Google Scholar 

  • Moll B, Levine RP (1970) Plant Physiol 46:576–580

    Google Scholar 

  • Mucke H, Löffelhardt W, Bohnert HJ (1980) FEBS Lett 111:347–352

    Google Scholar 

  • Pearce J, Leach CK, Carr NG (1969) J Gen Microbiol 55:371–378

    Google Scholar 

  • Raff RA, Mahler HR (1972) Science 177:575–582

    Google Scholar 

  • Rathnam CKM, Das VSR (1974) Can J Bot 52:2599–2604

    Google Scholar 

  • Rogers LJ, Shah SPJ, Goodwin TW (1966) Biochem J 100:14c–17c

  • Roy H, Terenna B (1977) Plant Physiol 60:532–537

    Google Scholar 

  • Schiff JA, Hodson RC (1973) Annu Rev Plant Physiol 24:381–414

    Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Science 199:395–403

    Google Scholar 

  • Schwarz Z, Kössel H (1980) Nature 283:739–742

    Google Scholar 

  • Shah SPJ, Cossins EA (1970) FEBS Lett 7:267–270

    Google Scholar 

  • Shargool PD, Steeves T, Weaver M, Russell M (1978) Can J Biochemistry 56:273–279

    Google Scholar 

  • Simcox PD, Reid EE, Canvin DT, Dennis DT (1977) Plant Physiol 59:1128–1132

    Google Scholar 

  • Steup M, Latzko F (1979) Planta 145:69–75

    Google Scholar 

  • Sundharadas G, Gilvarg C (1967) J Biol Chem 242:2983–2988

    Google Scholar 

  • Tsang MLS, Schiff JA (1975) Plant Sci Lett 4:301–307

    Google Scholar 

  • Ul-Haque M, Gallon J, Chaplin A (1977) Biochem Soc Trans 5:1484–1486

    Google Scholar 

  • Wada K, Hase T, Matsubara H (1977) Molecular evolution of chloroplast-type ferredoxin. In: Kimura M (ed) Molecular evolution and polymorphism. National Institute of Genetics, Mishima, p 189

    Google Scholar 

  • Wallsgrove RM, Lea PJ, Mills WR, Miflin BJ (1979) Plant Physiol 63s:26

    Google Scholar 

  • Weeden NF, Gottlieb LD (1980) J Hered 71:392–396

    Google Scholar 

  • Weitzman PDJ, Kinghorn HA (1980) FEBS Lett 114:225–227

    Google Scholar 

  • Willard JM, Gibbs M (1975) Meth Enzym 42:228–234

    Google Scholar 

  • Woese CR (1977) J Mol Evol 10:93–96

    Google Scholar 

  • Zimmermann G, Kelly GJ, Latzko E (1978) J Biol Chem 253:5952–5956

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weeden, N.F. Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol 17, 133–139 (1981). https://doi.org/10.1007/BF01733906

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01733906

Key words

Navigation