Skip to main content
Log in

The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations

III. Techniques and Potential Applications

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Restriction endonucleases and agarose gel electrophoresis have been used to demonstrate extensive nucleotide sequence diversity in mitochondrial DNA (mtDNA) within and between conspecific populations of rodents and other mammals. Cleavage of mtDNA samples with a relatively small number of endonucleases provides information concerning the phylogenetic relatedness of individual organisms which cannot now be readily obtained by any other type of molecular analysis. This information is qualitatively different from that available from the study of nuclear genes or gene products because the mitochondrial genome is inherited intact from the female parent and is not altered by recombination or meiotic segregation.

The requirements for large tissue samples and laborious DNA purification procedures have imposed severe limitations on the kinds of population surveys in which this technique could be utilized. Here, we show that these difficulties can be overcome by using DNA-DNA hybridization to detect minute amounts of mtDNA in crude tissue fractions which can be more easily and rapidly prepared from very small amounts of tissue without the use of expensive and immobile laboratory equipment. The techniques are described in detail in an effort to make restriction analysis of mtDNA available to biologists who may be unfamiliar with current DNA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alwine JC, Kemp DJ, Stark SR (1977) Proc Natl Acad Sci USA 74:5350–5354

    Google Scholar 

  • Avise JC, Lansman RA, Shade RO (1979a) Genetics 92:279–295

    Google Scholar 

  • Avise JC, Giblen-Davidson C, Laerm J, Patton JC, Lansman, RA (1979b), Proc Natl Acad Sci USA 76:6694–6698

    Google Scholar 

  • Berkner KL, Folk WR (1980) Methods Enzymol 65:28–36

    Google Scholar 

  • Bogenhagen D, Clayton DA (1974) J Biol Chem 249:7991–7995

    Google Scholar 

  • Boyer HW (1971) Ann Rev Microbiol 25:153–176

    Google Scholar 

  • Boyer HW (1974) Fed Proc 33:1125–1127

    Google Scholar 

  • Brown WM (1980) Proc Nal Acad Sci USA 77:3605–3609

    Google Scholar 

  • Brown WM, George MJr, Wilson AC (1979) Proc Natl Acad Sci USA 76:1967–1971

    Google Scholar 

  • Brown WM, Goodman HM (1979) Extrachromosomal DNA. Cummings DJ et al (eds) Academic Press New York, p 485

    Google Scholar 

  • Brown WM, Wright JW (1979) Science 203:1247–1249

    Google Scholar 

  • Carr A, Carr MH (1972) Ecology 53:425–429

    Google Scholar 

  • Chaconas G, van de Sande JH (1980) Methods Enzymol 65:75–85

    Google Scholar 

  • Challberg MD, Englund PT (1980) Methods Enzymol 65:39–43

    Google Scholar 

  • Davis RW, Botstein J, Roth J (1980) Adv Bacterial Gen Cold Spring Harbor New York

  • Dawid IB, Blackler AW (1972) Dev Biol 29:152–161

    Google Scholar 

  • Drouin J, Symons RJ (1979) In Extrachromosomal DNA. Cummings DJ et al (eds) p 471

  • Farris JS (1972) Amer Nat 106:645–668

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Science 155:279–284

    Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Proc Natl Acad Sci 77:6715–6719

    Google Scholar 

  • Goldenberg CJ, Raskis HJ (1979) Cell 16:131–138

    Google Scholar 

  • Gotoh O, Hayaski JI, Yonekawa H, Tagashira Y (1979) J Mol Evol 14:301–310

    Google Scholar 

  • Greene PJ, Heynecker HL, Bolivar F, Rodriguez RL, Betlach MC, Covarubias AA, Backman K, Russell DJ, Tait R, Boyer HW (1978) Nucleic Acids Res 7:2373–2380

    Google Scholar 

  • Harris H (1966) Proc Roy Soc Lond (Biol) 164:298–310

    Google Scholar 

  • Hawkins RE, Klimstra WD (1970) J Wldf Mgt 34:407–419

    Google Scholar 

  • Hayashi JI, Yonekawa H, Gotoh O, Watanabe J, Tagashira Y (1978) Biochem Biophys Res Commun 83:1032–1038

    Google Scholar 

  • Helling EB, Goodman HM, Boyer HM (1974) J Virol 14:1235–1244

    Google Scholar 

  • Hutchinson CA III, Newbold JE, Potter SS, Edgell MH (1974) Nature 251:536–538

    Google Scholar 

  • Kaplan N, Langley CH (1979) J Mol Evol 13:295–304

    Google Scholar 

  • Lewontin RC (1974) The Genetic Basis of Evolutionary Change. Columbia University Press, New York

    Google Scholar 

  • Lewontin RC, Hubby JL (1966) Genetics 54:595–609

    Google Scholar 

  • Maniatis T, Jeffrey A, Van de Sande H (1975) Biochemistry 14:3787–3794

    Google Scholar 

  • Murray K, Murray N (1975) J Mol Biol 98:551–564

    Google Scholar 

  • Neal MW, Florini JR (1973) Anal Biochem 55:328–330

    Google Scholar 

  • Nei M (1975) Molecular Population Genetics and Evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nei M, Li W (1979) Proc Natl Acad Sci USA 76:5269–5273

    Google Scholar 

  • Packer C (1979) Anim Behav 27:1–36

    Google Scholar 

  • Prager EM, Wilson AC (1978) J Mol Evol 11:129–142

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Roberts RJ (1980) Nucleic Acids Res 8:r63-r80

    Google Scholar 

  • Schaller SB (1972) The Serengeti Lion: A Study of Predator-Prey Relations. University Chicago Press, Chicago

    Google Scholar 

  • Selander RK (1976) Molecular Evolution. FJ Ayala (ed) Sinauer, Sunderland Mass, p 21

    Google Scholar 

  • Shaw DM, Langley CH (1977) Nucleic Acids Res 4:2949–2960

    Google Scholar 

  • Sherman PW, Morton ML (1979) Nature Hist 88:50–57

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Strickel LC (1968) Biology ofPeromyscus. King JA (ed), pp 373–411. Stillwater, Oklahoma: Amer Soc Mammalogists Publ "2

    Google Scholar 

  • Upholt WB (1977) Nucleic Acids Res 4:1257–1265

    Google Scholar 

  • Upholt WB, David IB (1977) Cell 11:571–583

    Google Scholar 

  • Wahl GM, Stern M, Stark GR (1979) Proc Natl Acad Sci USA 76:3683–3687

    Google Scholar 

  • White MJD (1978) Chromosoma 67:55–61

    Google Scholar 

  • Wilson EO (1975) Sociobiology. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Wyman AR, White R (1980) Proc Natl Acad Sci USA 77:6754–6758

    Google Scholar 

  • Zabeau M, Roberts RJ (1979) Molecular Genetics III: Chromosome Structure. Taylor JH et al. (eds) Academic Press, New York, p 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lansman, R.A., Shade, R.O., Shapira, J.F. et al. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. J Mol Evol 17, 214–226 (1981). https://doi.org/10.1007/BF01732759

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732759

Key words

Navigation