Skip to main content
Log in

Controller node complexity: A measure of the degree of gene coordination

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

For the comparative study of gene regulation, the concept of a controller node is made use of. A controller node is the set of molecular components directly intervening in the control of RNA derived from a functional unit of gene action (abbreviated fuga). The complexity of a controller node is defined here as the number per fuga of distinct components included in the controller node relevant to a given fuga. Two types of controller node are distinguished: transcriptional and processing. The complexity of a transcriptional controller node is the sum of distinct receptor sequences in the fuga, distinct regulator molecules that interact with them, and distinct effector molecules or modifying enzymes that interact with the regulator molecules. Likewise, processing controller node complexity is the sum of distinct receptor sequences on an intact nuclear RNA transcript, distinct processor molecules that interact with the receptors, and distinct effector molecules or modifying enzymes that interact with the processors. For valid comparisons between widely different organisms, values for transcriptional and processing controller node complexity might in the future be combined to yield a value for conjugate controller node complexity. Some conventions for evaluating controller node complexity are proposed and are applied to a few bacterial operons. Particular conditions of the application of the concept to eukaryote fugas are discussed. Average controller node complexity per organism or per genetic subsystem is a measure of the amount of gene coordination. This value would also reflect the hierarchical complexity of organisms, if it increased during progressive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, G.N., Schweingruber, M.E., Brown, K.D., Squires, C., Yanofsky, C. (1976). Proc. Natl. Acad. Sci.73, 2351–2355

    Google Scholar 

  • Bishop, J.O., Beckmann, J.S., Campo, M.S., Hastie, N.D., Izquierdo, M., Perlman, S. (1975). Phil. Trans. R. Soc. Lond., B,272, 147–157

    Google Scholar 

  • Chen, J.H., Spector, A. (1977). Proc. Natl. Acad. Sci.74, 5448–5452

    Google Scholar 

  • Chikaraishi, D.M., Deeb, S.S., Sueoka, N. (1978). Cell13, 111–120

    Google Scholar 

  • Crick, F. (1979). Science204, 264–270

    Google Scholar 

  • Duffy, J.J., Geiduschek, E.P. (1977). Nature270, 28–32

    Google Scholar 

  • Englesberg, E., Squires, C., Meronk, F. (1969). Proc. Natl. Acad. Sci.62, 1100–1107

    Google Scholar 

  • Galau, G.A., Klein, W.H., Davis, M.M., Wold, B.J., Britten, R.J., Davidson, E.H. (1976). Cell7, 487–505

    Google Scholar 

  • Goldberger, R.F., Deeley, R.G., Mullinix, K.P. (1976). Adv. Genetics18, 1–67

    Google Scholar 

  • Gros, F., Kourilsky, P., Luzzati, D., Naono, S. (1970). Proc. Roy. Soc. London, B,176, 251–265

    Google Scholar 

  • Hua, S.S., Markovitz, A. (1972). J. Bacteriol.110, 1089–1099

    Google Scholar 

  • Huxley, J.S. (1942). Evolution, the modern synthesis. London: Allen and Unwin

    Google Scholar 

  • Johnson, A., Meyer, B.J., Ptashne, M. (1978). Proc. Natl. Acad. Sci.75, 1783–1787

    Google Scholar 

  • Judd, B., Young, M.W. (1974). Cold Spring Harbor Symp. Quart. Biol.38, 573–579

    Google Scholar 

  • Kourilsky, Ph., Gros, F. (1974). Fogarty Int. Cent. Proc. No 25 (DHEW Publ. No. (NIH) 74-648), pp. 19–51

  • Laird, C.D., Chooi, W.Y. (1976). Chromosoma58, 193–218

    Google Scholar 

  • Lee, F., Yanofsky, C. (1977). Proc. Natl. Acad. Sci.74, 4365–4369

    Google Scholar 

  • Maniatis, T., Ptashne, M. (1973). Proc. Natl. Acad. Sci.70, 1531–1535

    Google Scholar 

  • Miozzari, G.F., Yanofsky, C. (1978). J. Bact.133, 1457–1466

    Google Scholar 

  • McQuillen, K. (1973). Synthesis of proteins. In: Biochemistry of bacterial growth, J. Mandelstam, K. McQuillen, eds., pp. 316–365, 2nd edition, New York: Halsted Press (John Wiley)

    Google Scholar 

  • Rose, J.K., Squires, C.L., Yanofsky, C., Yang, H.L., Zubay, G. (1973). Nature New Biol.245, 133–137

    Google Scholar 

  • Stebbins, G.L. (1969). The basis of progressive evolution. University of North Carolina Press

  • Tobin, A. (1979). Develop. Biol.68, 47–58

    Google Scholar 

  • Watson, J.D., (1976). The molecular biology of the gene. 3rd ed. Menlo Park, Ca.: W.A. Benjamin

    Google Scholar 

  • Weiss, P.A. (1971). Within the gates of science and beyond. Chapter 18. New York: Hafner

    Google Scholar 

  • Yanofsky, C. (1971). J. Amer. Med. Assoc.218, 1026–1035

    Google Scholar 

  • Yanofsky, C., Soll, L. (1977). J. Mol. Biol.113, 663–677

    Google Scholar 

  • Zuckerkandl, E., Pauling, L. (1965). J. Theoret. Biol.8, 357

    Google Scholar 

  • Zuckerkandl, E. (1976a). Programs of gene action and progressive evolution. In: Molecular anthropology - genes and proteins in the evolutionary ascent of the primates. M. Goodman, R.E. Tashian, eds. New York: Plenum

    Google Scholar 

  • Zuckerkandl, E. (1976b). J. Mol. Evol.9, 73–104

    Google Scholar 

  • Zuckerkandl, E. (1978a). J. Mol. Evol.12, 57–89

    Google Scholar 

  • Zuckerkandl, E. (1978b). Zeitschr. Morph. Anthrop.69, 117–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuckerkandl, E. Controller node complexity: A measure of the degree of gene coordination. J Mol Evol 14, 311–321 (1979). https://doi.org/10.1007/BF01732498

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732498

Key words

Navigation