Skip to main content
Log in

Solution of large eigenvalue problems in electronic structure calculations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Predicting the structural and electronic properties of complex systems is one of the outstanding problems in condensed matter physics. Central to most methods used in molecular dynamics is the repeated solution of large eigenvalue problems. This paper reviews the source of these eigenvalue problems, describes some techniques for solving them, and addresses the difficulties and challenges which are faced. Parallel implementations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Baroni and P. Giannozzi,Towards very large-scale electronic-structure calculations, Europhys. Lett. 17 (1992), pp. 547–552.

    Google Scholar 

  2. E. J. Bylaska, S. Kohn, S. Baden, A. Edelman, R. Kawai, M. E. Ong, and J. Weare,Scalable parallel numerical methods and software tools for material design, in Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, San Francisco, CA, 1995, pp. 219–224.

  3. J. R. Chelikowsky, N. Troullier, and Y. Saad,Finite-difference-pseudopotential method: electronic structure calculations without a basis, Phys. Rev. Lett., 72 (1994), pp. 1240–1243.

    Google Scholar 

  4. J. R. Chelikowsky and M. L. Cohen,Handbook on Semiconductors Vol. 1, P. T. Landsberg ed., Elsevier, Amsterdam, 1992.

    Google Scholar 

  5. J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad,Higher order finite difference pseudopotential method: An application to diatomic molecules, Phys. Rev. B 50 (1994), pp. 11355–11364.

    Google Scholar 

  6. J. R. Chelikowsky, N. R. Troullier, X. Jing, D. Dean, N. Binggeli, K. Wu, and Y. Saad,Algorithms for the structural properties of clusters, Computer Physics Communications, 85 (1995), pp. 325–335.

    Google Scholar 

  7. D. T. Colbert and W. H. Miller,A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method, J. Comput. Phys., 96 (1992), pp. 1982–1991.

    Google Scholar 

  8. M. Crouzeix, B. Philippe, and M. Sadkane,The Davidson method, SIAM J. Sci. Comput., 15 (1994), pp. 62–76.

    Google Scholar 

  9. J. Cullum and R. A. Willoughby,Lanczos algorithms for large symmetric eigenvalue computations 2: Programs, Progress in Scientific Computing, v. 4, Birkhauser, Boston, 1985.

    Google Scholar 

  10. J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart,Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comp., 30 (1976), pp. 772–795.

    Google Scholar 

  11. E. R. Davidson,The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), 87–94.

    Google Scholar 

  12. D. E. Ellis and G. S. Painter, Phys. Rev. B, 2 (1970), pp. 2887.

    Google Scholar 

  13. B. Fornberg and D. M. Sloan,A review of pseudospectral methods for solving partial differential equations, Acta Numerica, (1994), pp. 203–267.

  14. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,PVM3 users's guide and reference manual, Tech. Report TM-12187, Oak Ridge National Laboratory, TN, 1994.

    Google Scholar 

  15. X. Jing, N. R. Troullier, J. R. Chelikowsky, K. Wu, and Y. Saad,Vibrational modes of silicon nanostructures, Solid State Communication, 96:4 (1995), pp. 231–235.

    Google Scholar 

  16. X. Jing, N. R. Troullier, D. Dean, N. Binggeli, J. R. Chelikowsky, K. Wu, and Y. Saad,Ab initio molecular dynamics simulations of Si clusters using the higher-order finite-difference-pseudopotential method, Phys. Rev. B, 50 (1994), pp. 12234–12237.

    Google Scholar 

  17. G. E. Kimball and G. H. Shortley, Phys. Rev., 45 (1934), pp. 815.

    Google Scholar 

  18. C. M. Kirkpatrick and D. S. Marynick,Localized molecular orbital studies of transition metal complexes. II. Simple π-accepting ligands, J. Comput. Chem., 6 (1985), pp. 142–147.

    Google Scholar 

  19. S. R. Kohn and S. Baden,The parallelization of an adaptive multigrid eigenvalue solver with LPARX, in Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, San Francisco, CA, 1995, pp. 552–557.

  20. W. Kohn and L. J. Sham, Phys. Rev. A, 140 (1965), pp. 1133.

    Google Scholar 

  21. X.-P. Li, R. W. Nunes, and D. Vanderbilt,Density-matrix electronic-structure method with linear system-size scaling, Phys. Rev. B, 47 (1993), pp. 10891–10894.

    Google Scholar 

  22. B. Liu, in: Numerical Algorithms in Chemistry: Algebraic Methods, C. Moler and I. Shavitt eds., LBL-8158 Lawrence Berkeley Laboratory, 1978.

  23. R. B. Morgan and D. S. Scott,Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 817–825.

    Google Scholar 

  24. B. N. Parlett and D. S. Scott,The Lanczos algorithm with selective orthogonalization, Math. Comp., 33 (1979), pp. 217–238.

    Google Scholar 

  25. Y. Saad,Numerical Methods for Large Eigenvalue Problems, Manchester Univ. Press, Manchester, 1992.

    Google Scholar 

  26. Y. Saad and A. V. Malevsky,P-SPARSLIB: A portable library of distributed memory sparse iterative solvers, Research Report 95/180, University of Minnesota Supercomputer Institute, Minneapolis, MN, September 1995.

    Google Scholar 

  27. Y. Saad and K. Wu,Design of an iterative solution module for a parallel matrix library (P-SPARSLIB), Applied Numerical Mathematics, 19 (1995), pp. 343–357.

    Google Scholar 

  28. A. Stathopoulos and C. F. Fischer,A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix, Comput. Phys. Commun., 79 (1994), pp. 268–290.

    Google Scholar 

  29. A. Stathopoulos, A. Ynnerman, and C. F. Fischer,A PVM implementation of the MCHF atomic structure package, The International Journal of Supercomputer Applications and High Performance Computing, 10 (1996), pp. 41–61,

    Google Scholar 

  30. A. P. Seitsonen, M. J. Puska, and R. M. Nieminen,Real-space electronic-structure calculations: Combination of the finite-difference and conjugate-gradient methods, Phys. Rev. B, 51 (1995), pp. 14057–14061.

    Google Scholar 

  31. C. H. Tong, T. F. Chan, and C. C. J. Kuo,Multilevel filtering preconditioners: Extensions to more general elliptic problems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 227–242.

    Google Scholar 

  32. N. R Troullier and J. L. Martins,Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43 (1991), pp. 1993–1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by NSF grants DMR-9217287 and ASC 95-04038, and by the Minnesota Supercomputer Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, Y., Stathopoulos, A., Chelikowsky, J. et al. Solution of large eigenvalue problems in electronic structure calculations. Bit Numer Math 36, 563–578 (1996). https://doi.org/10.1007/BF01731934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731934

Key words

Navigation