Skip to main content
Log in

Pathobiochemical aspects of diabetic nephropathy

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Diabetic nephropathy develops in many diabetic patients as consequence of glomerulosclerosis. On the basis of a series of recent observations it is suggested that a combination of metabolic and hemodynamic changes is responsible for the pathogenesis of diabetic nephropathy. Since the glomerular filtration unit has been characterized to consist of collagen type IV and minor components like laminin, fibronectin and heparan sulfate proteoglycan, influence of diabetes on basement membrane (BM) components has been studied. Biochemical alterations of glomerular BM consist of an increased nonenzymatic glucosylation of type IV collagen leading to unphysiological crosslinking. This, in turn, may result in alteration of the size selective properties of the glomerular filtration unit. Changes in composition of glomerular BM have recently been described. An increased synthesis of type IV collagen with concomitant decrease of heparan sulfate proteoglycan may lead to alteration of the charge selective barrier and consequently to increased permeability of the glomerular BM. Permanently unbalanced synthesis of BM components finally results in obliteration of the capillary lumen. In late state nephropathy intrinsic basement membrane components are no longer produced. Instead, massive accumulation of PAS positive material occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM:

basement membrane

AGE:

advanced glucosylation end products

IgG:

immunglobulin G

HSPG:

heparan sulfate proteoglycan

References

  1. Becher D, Miller M (1960) Presence of diabetic glomerulosclerosis in patients with hemochromatosis. N Engl J Med 263:367–371

    Google Scholar 

  2. Beisswenger PJ, Spiro RG (1970) Human glomerular basement membrane: Chemical alteration in diabetes mellitus. Science 168:596–598

    Google Scholar 

  3. Bell RH, Fernandez-Cruz L, Brimm JE, Sayers HA, Lee S, Orloff MJ (1980) Prevention by whole pancreas transplantation of glomerular basement membrane thickening in alloxan diabetes. Surgery 88:31–35

    Google Scholar 

  4. Beyer-Mears A, Ku L, Cohen MP (1984) Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil. Diabetes 33:604–607

    Google Scholar 

  5. Brownlee M, Pongor S, Cerami A (1983) Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen: Role in the in situ formation of immune complexes. J Exp Med 138:1739–1744

    Google Scholar 

  6. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A (1986) Aminoguanidin prevents diabetes-induced arterial wall protein cross-linking. Science 232:1629–1632

    Google Scholar 

  7. Brownlee M (1987) Personal communication

  8. Camerini-Davalos RA, Caufield JB, Rees SB, Lozano-Castaneda O, Naldjian S, Marble A (1963) Preliminary observations on subjects with prediabetes. Diabetes 12:508–518

    Google Scholar 

  9. Cohen MP, Surma ML (1984) Effects of diabetes on in vivo metabolism of 35 S-labeled glomerular basement membrane. Diabetes 33:8–12

    Google Scholar 

  10. Deckert T, Feld-Rasmussen B, Djurup R, Deckert M (1988) Glomerular size and charge selectivity in insulin-dependent diabetes mellitus. Kidney Int 33:100–106

    Google Scholar 

  11. Farquhar MG, Courtoy PJ, Lemkin MC, Kanwar YS (1982) Current knowledge of the functional architecture of the glomerular basement membrane. In: Kuehn K, Schoene H, Timpl R (eds) New trends in basement membrane research. Raven Press, New York, pp 9–29

    Google Scholar 

  12. Federlin K, Bretzel RG (1981) Reversibility of diabetic glomerulopathy by islet transplantation in experimental animals. Pediat Adolesc Endocrinol 9:326–332

    Google Scholar 

  13. Gallagher JT, Lyon M, Steward WP (1986) Structure and function of heparan sulfate proteoglycans. Biochem J 236:313–325

    Google Scholar 

  14. Grant ME, Harwood R, Williams IF (1976) Increased synthesis of glomerular basement membrane collagen in streptozotocin diabetes. J Physiol (London) 257:56–57

    Google Scholar 

  15. Greene D (1988) The pathogenesis and prevention of diabetic neuropathy and nephropathy. Metabol 37:Suppl 1 25–29

    Google Scholar 

  16. Hostetter TH, Rennke HG, Brenner BM (1982) The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 72:375–380

    Google Scholar 

  17. Jeraj KP, Michael AF, Mauer SM, Brown DM (1983) Glucosylated and normal human or rat albumin do not bind to renal basement membranes of diabetic and control rats. Diabetes 32:380–382

    Google Scholar 

  18. Kanwar YS, Farquhar MG (1979) Isolation of glycosaminoglycans (heparan-sulfate) from glomerular basement membranes. Proc Natl Acad Sci USA 76:4493–4497

    Google Scholar 

  19. Kanwar YS, Rosenzweig LJ, Linker A, Jakubowski ML (1983) Decreased de novo synthesis of glomerular proteoglycans in diabetes: Biochemical and autoradiographic evidence. Proc Natl Acad Sci 80:2272–2275

    Google Scholar 

  20. Kanwar YS (1984) Biophysiology of filtration and proteinuria. Lab Invest 51:7–21

    Google Scholar 

  21. Kefalides NA (1974) Biochemical properties of human glomerular basement membrane in normal and diabetic kidneys. J Clin Invest 53:403–407

    Google Scholar 

  22. Kilo C, Vogler N, Williamson JR (1972) Muscle capillary basement membrane changes related to aging and to diabetes mellitus. Diabetes 21:881–905

    Google Scholar 

  23. Kimmelstiel P, Wilson C (1936) Intercapillary lesions in the glomeruli of the kidney. Amer J Path 12:83–89

    Google Scholar 

  24. Krolewski AS, Canessa M, Warram JH, Lori MB, Laffel A, Christlieb AR, Knowler WC, Rand LI (1988) Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 318:140–145

    Google Scholar 

  25. Laurie GW, Leblond CP, Martin GR (1982) Localization of type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin to the basal lamina of basement membranes. J Cell Biol 95:340–344

    Google Scholar 

  26. Luft R, Guillemin R (1974) Growth hormone and diabetes in man: old concepts — new implications. Diabetes 23:783–787

    Google Scholar 

  27. Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC (1988) Increased sodium-lithium counter transport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med 318:146–150

    Google Scholar 

  28. Mauer SM, Barbosa J, Vernier RL (1976) Development of diabetic vascular lesions in normal kidneys transplanted into patients with diabetes mellitus. N Engl J Med 295:916–920

    Google Scholar 

  29. Näthke HE, Siess EA, Wieland OH (1984) Glucosylated plasma protein injection does not produce glomerular basement membrane thickening. Horm metabol Res 16:557–558

    Google Scholar 

  30. Osterby R, Gunderson HTG, Gotzsche O, Hirose K, Kroustrup JP, Rasch R, Seyer-Hansen K (1982) Quantitative studies of diabetic glomeruli. In: Kuehn K, Schoene H, Timpl R (eds) New Trends in Basement Membrane Research, New York, Raven Press, pp 203–209

    Google Scholar 

  31. Parthasarathy N, Spiro RG (1982) Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 31:738–741

    Google Scholar 

  32. Pongor S, Ulrich PC, Bencsath A, Cerami A (1984) Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci USA 81:2684–2688

    Google Scholar 

  33. Rasch R (1980) Prevention of diabetic glomerulopathy in streptozotocin diabetics rats by insulin treatment. Diabetologia 18:413–416

    Google Scholar 

  34. Rohrbach DH, Hassell JR, Kleinman HK, Martin GR (1982) Alterations in basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes 31:185–188

    Google Scholar 

  35. Rohrbach DH, Wagner CW, Star VL, Martin GR, Brown KS, Yoon JW (1983) Reduced synthesis of basement membrane heparan sulfate proteoglycan in streptozotocin-induced diabetic mice. J Biol Chem 258:11672–11677

    Google Scholar 

  36. Rohrbach R (1986) Reduced content and abnormal distribution of anionic sites (acid proteoglycans) in the diabetic glomerular basement membrane. Virch Arch (Cell Pathol) 51:127–135

    Google Scholar 

  37. Schleicher ED, Wieland OH (1984) Changes of human glomerular basement membrane in diabetes mellitus. J Clin Chem Clin Biochem 22:223–227

    Google Scholar 

  38. Schleicher ED, Wieland OH (1986) Kinetic analysis of glycation as a tool for assessing the half-life of proteins. Biochim Biophys Acta 884:199–205

    Google Scholar 

  39. Schleicher ED, Wagner EM, Olgemöller B, Nerlich A, Gerbitz KD (1988) Immunological determination of a basement membrane associated heparan sulfate proteoglycan in human tissues. Lab Invest submitted

  40. Siess EA, Näthke HE, Dexel Th, Haslbeck M, Mehnert H, Wieland OH (1979) Dependency of muscle capillary basement membrane thickness on the duration of diabetes. Diabetes Care 2:472–478

    Google Scholar 

  41. Siperstein MD, Unger RH, Madison LL (1968) Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. J Clin Invest 47:1973–1999

    Google Scholar 

  42. Stow JL, Sawada H, Farquhar MG (1985) Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci USA 82:3296–3300

    Google Scholar 

  43. Timpl R, Oberbäumer I, Furthmayr H, Kuehn K (1982) Macromolecular organisation of type IV collagen. In: Kuehn K, Schoene H, Timpl R (eds) New trends in basement membrane research. Raven Press, New York, pp 57–68

    Google Scholar 

  44. McVerry BA, Hopp A, Fisher C, Huhns ER (1980) Lancet I:738–740

    Google Scholar 

  45. Vogt BW, Schleicher ED, Wieland OH (1982) ε-amino-lysine bound glucose in human tissues obtained at autopsy: increase in diabetes mellitus. Diabetes 31:1123–1127

    Google Scholar 

  46. Vracko R (1974) Basal lamina layering in diabetes mellitus: evidence for accelerated rate of cell death and cell regeneration. Diabetes 23:94–104

    Google Scholar 

  47. Witztum JL, Steinbrecher UP, Kesaniemi YA, Fisher M (1984) Antibodies to glucosylated proteins in the plasma of patients with diabetes mellitus. Proc Natl Acad Sci USA 81:3204–3208

    Google Scholar 

  48. Yue DK, McLennan S, Delbridge L (1983) The thermal stability of collagen in diabetic rats: Correlation with severty of diabetes and non-enzymatic glycosylation. Diabetologia 24:282–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleicher, E., Nerlich, A. & Gerbitz, K.D. Pathobiochemical aspects of diabetic nephropathy. Klin Wochenschr 66, 873–882 (1988). https://doi.org/10.1007/BF01728949

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728949

Key words

Navigation