Skip to main content
Log in

Cellular mechanism of ischemic acute renal failure: Role of Ca2+ and calcium entry blockers

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

This presentation briefly reviews the cellular mechanism of ischemic acute renal failure (ARF) with particular emphasis on the role of Ca2+ and calcium entry blockers (CEB). Vascular consequences of an ischemic renal insult including vasoconstriction, diminished glomerular permeability, loss of autoregulation, and hypersensitivity to renal nerve stimulation may relate to increased cellular Ca2+ concentration in the renal afferent arteriole and glomerular mesangial cells. Evidence is also presented that the ischemic injury to tubular plasma membranes is associated with increased Ca2+ uptake. With an ischemic insult of a short duration, the renal mitochondria are able to buffer the increased cellular Ca2+. However, after an ischemic insult of long duration, the Ca2+ overloaded mitochondria deteriorate, adenosine triphosphate (ATP) synthesis decreases, and cell death follows. If a sufficient number of renal tubular cells undergo this cell death, tubular obstruction, i.e. the maintenance phase of ARF, occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cronin RE, Erickson AM, De Torrente A, McDonald KM, Schrier RW (1978) Norepinephrine-induced acute renal failure: A reversible ischemic model of acute renal failure. Kidney Int 14:187–190

    Google Scholar 

  2. Matthys E, Patton MK, Osgood RW, Venkatachalam MA, Stein JH (1983) Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int 23:717–724

    Google Scholar 

  3. Adams PL, Adams FF, Bell PD, Navar LG (1980) Impaired renal blood flow autoregulation in ischemic renal failure. Kidney Int 18:68–76

    Google Scholar 

  4. Kelleher SP, Robinette JB, Conger JD (1984) Sympathetic nervous system in the loss of autoregulation in acute renal failure. Am J Physiol 246:F379-F386

    Google Scholar 

  5. Cheung JY, Constantine JM, Bonventre JV (1986) Regulation of cytosolic free calcium concentration in cultured renal epithelial cells. Am J Physiol 251:F690-F701

    Google Scholar 

  6. Carafoli E (1979) The calcium cycle of mitochondria. FEBS Lett 104:1–5

    Google Scholar 

  7. Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Comm 42:298–305, 1971

    Google Scholar 

  8. Rossi CS, Lehninger AL (1964) Stoichiometry of respiratory stimulation, accumulation of Ca2+ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J Biol Chem 239:3971–3980

    Google Scholar 

  9. Conger JD, Robinette JR, Schrier RW (1988) Smooth muscle calcium and endothelium derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest (in press)

  10. Burke TJ, Arnold PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW (1984) Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological and mitochondrial studies. J Clin Invest 74:1830–1841

    Google Scholar 

  11. Goldfarb D, Iaina A, Serbon I, Govendo S, Koupler S, Eliahou HE (1983) Beneficial effect of verapamil in ischemic acute renal failure in the rat. Proc Soc Exp Biol Med 172:389–392

    Google Scholar 

  12. Wait RB, White G, David JH (1983) Beneficial effects of verapamil on postischemic renal failure. Surgery 94:276–282

    Google Scholar 

  13. Malis CD, Cheung JY, Leaf AL, Bonventre JV (1983) Effects of verapamil in models of ischemic acute renal failure in the rat. Am J Physiol 245:F735-F742

    Google Scholar 

  14. Shapiro JI, Cheung C, Itabashi A, Chan L, Schrier RW (1985) The effect of verapamil on renal function after warm and cold ischemia in the isolated perfused rat kidney. Transplantation 40:596–600

    Google Scholar 

  15. Wagner K, Albrecht S, Neumayer HH (1986) Prevention of delayed graft function in cadaveric kidney transplantation by a calcium antagonist. Preliminary results of two prospective randomized trials. Transplantation Proc 18:510–515

    Google Scholar 

  16. Goldberg JD, Schrier RW (1984) Effect of calcium membrane blockers on in vivo vasoconstrictor properties of norepinephrine, angiotensin II and vasopressin. Mineral Electrolyte Metab 10:178–183

    Google Scholar 

  17. Meyer-Lehnert H, Takeda K, Schrier RW (1986) Effects of arginine vasopressin on calcium kinetics and cell contraction in cultured vascular smooth muscle cells (abstract). Clin Res 34:482A

    Google Scholar 

  18. Takeda K, Meyer-Lehnert H, Kim JK, Schrier RW (1988) Effect of angiotensin II on Ca2+ kinetics and contraction in cultured rat glomerular mesangial cells. Am J Physiol 254:F254-F266

    Google Scholar 

  19. Takeda K, Meyer-Lehnert H, Kim JK, Schrier RW (1988) AVP-induced Ca2+ fluxes and contraction of rat glomerular mesangial cells. Am J Physiol (in press)

  20. Bonventre JV, Skorecki KL, Kreisberg JI, Cheung JY (1986) Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. Am J Physiol 251:F94-F102

    Google Scholar 

  21. Ichikawa I, Miele JF, Brenner BM (1979) Reversal of renal cortical actions of angiotensin II by verapamil and manganese. Kidney Int 16:137–147

    Google Scholar 

  22. Cheung JY, Leaf A, Bonventre JV (1984) Mechanism of protection by verapamil and nifedipine from anoxic injury in isolated cardiac myocytes. Am J Physiol 246:C323-C329

    Google Scholar 

  23. Solez L, Morel-Maroger L, Sraer J (1979) The morphology of “acute tubular necrosis” in man: Analysis of 57 renal biopsies and comparison with the glycerol model. Medicine 58:362–376

    Google Scholar 

  24. Schrier RW, Arnold PE, Van Putten VJ, Burke TJ (1987) Pathophysiology of cell ischemia, Chapt 47. In: Schrier RW, Gottschalk CW (eds) Diseases of the Kidney, 4/e. Little Brown, Boston

    Google Scholar 

  25. Burnier M, Van Putten V, Wilson P, Burke T, Schrier RW (1985) Beneficial effects of verapamil and nifedipine on Ca influx and cell viability in anoxic renal cortical proximal tubules. Mineral Electrolyte Metab 11:390–391

    Google Scholar 

  26. Burke TJ, Cronin RE, Duchin KL, Peterson LN, Schrier RW (1980) Ischemic and tubular obstruction during acute renal failure in dogs: Mannitol in protection. Am J Physiol 238:F305-F314

    Google Scholar 

  27. Donohoe JF, Venkatachalam MA, Bernard DB, Levinsky NG (1978) Tubular leakage and obstruction after renal ischemia: Structure-function correlations. Kidney Int 13:208–222

    Google Scholar 

  28. Cronin RE, De Torrente A, Miller PD, Bulger RE, Burke TJ, Schrier RW (1978) Pathogenetic mechanisms in early norepinephrine-induced acute renal failure: Functional and histological correlates of protection. Kidney Int 14:115–125

    Google Scholar 

  29. Wong SME, Chase HS Jr (1986) Role of intracellular calcium in cellular volume regulation. Am J Physiol 250:C841-C852

    Google Scholar 

  30. Trump BF, Berezesky IK, Laiho KV, Osornio AR, Mergner WJ, Smith MW (1980) The role of calcium in cell injury. A review. Scanning Electron Microscopy 2:437–462

    Google Scholar 

  31. Arnold PE, Van Putten VJ, Lumlertgul D, Burke TJ, Schrier RW (1986) Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia. Am J Physiol 250:F357-F363

    Google Scholar 

  32. Chien KR, Abrams J, Pfau RG, Farber JL (1977) Prevention by chlorpromazine of ischemic liver cell death. Am J Physiol 88:539–558

    Google Scholar 

  33. Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: A final common pathway. Science 206:700–702

    Google Scholar 

  34. Chien KR, Abrams J, Serroni A, Martin JT, Farber JL (1978) Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem 253:4809–4817

    Google Scholar 

  35. Matthys E, Patel Y, Kreisberg J, Stewart JH, Venkatachalam M (1984) Lipid alterations induced by renal ischemia: Pathogenic factor in membrane damage. Kidney Int 26:153–161

    Google Scholar 

  36. Takano T, Soltoff SP, Murdaugh S, Mandel LJ (1985) Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules. J Clin Invest 76:2377–2384

    Google Scholar 

  37. McCord JM (1985) Oxygen-derived free radicals in post-ischemic tissue injury. N Engl J Med 312:159–163

    Google Scholar 

  38. Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164

    Google Scholar 

  39. McCord JM, Roy RS (1982) The pathophysiology of superoxide: Roles in inflammation and ischemia. Can J Physiol Pharmacol 60:1346–1352

    Google Scholar 

  40. Burnier M, Burke T, Shanley P, Schrier R (1986) Effect of extracellular acidosis on enhanced Ca influx in anoxic renal proximal tubules (abstract). Kidney Int 29:299

    Google Scholar 

  41. Van Den Bosch H (1982) Phospholipases, Chapt 9. In: Hawthorne JN, Ansell GB, Elsevier Biomedical Press, Nottingham and Birmingham (New Comprehensive Biochemistry Series, Vol 4, p 313)

    Google Scholar 

  42. Busa WB, Nuticelli R (1984) Metabolic regulation via intracellular pH. Am J Physiol 246:R409-R438

    Google Scholar 

  43. Molitoris BA, Wilson PD, Schrier RW, Simon FR (1985) Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores. J Clin Invest 76:2097–2105

    Google Scholar 

  44. Hems DA, Brosnan JT (1970) Effects of ischaemia on content of metabolites in rat liver and kidney in vivo. Biochem J 120:105–111

    Google Scholar 

  45. Mason J, Beck F, Dorge A, Rick R, Thurau K (1981) Intracellular electrolyte composition following renal ischemia. Kidney Int 20:61–70

    Google Scholar 

  46. Snowdowne KW, Freudenrich CC, Borle AB (1985) The effects of anoxia on cytosolic free calcium, calcium fluxes, and cellular ATP levels in cultured kidney cells. J Biol Chem 260:11619–11626

    Google Scholar 

  47. Snowdowne KW, Borle AB (1984) Measurement of cytosolic free calcium in mammalian cells with aequorin. Am J Physiol 247:C396-C408

    Google Scholar 

  48. Wilson PD, Schrier RW (1986) Nephron segment and calcium as determinants of anoxic cell death in primary renal cell cultures. Kidney Int 29:1172–1179

    Google Scholar 

  49. Schwertschlag U, Schrier RW, Wilson P (1986) Beneficial effects of calcium channel blockers and calmodulin binding drugs on in vitro renal cell anoxia. J Pharmacol Exp Ther 238:119–124

    Google Scholar 

  50. Schieppati A, Wilson PD, Burke TJ, Schrier RW (1985) Effect of renal ischemia on cortical microsomal calcium accumulation. Am J Physiol 249:C476-C483

    Google Scholar 

  51. Wilson DR, Arnold PE, Burke TJ, Schrier RW (1984) Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat. Kidney Int 25:519–526

    Google Scholar 

  52. Arnold PE, Lumlertgul D, Burke TJ, Schrier RW (1985) In vitro versus in vivo mitochondrial calcium loading in ischemic acute renal failure. Am J Physiol 248:F845-F850

    Google Scholar 

  53. Becker GL, Fiskum G, Lehninger AL (1980) Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J Biol Chem 255:9009–9012

    Google Scholar 

  54. Patak RV, Fadem SZ, Lifschitz MD, Stein JH (1979) Study of factors which modify the development of norepinephrine-induced acute renal failure in the dog. Kidney Int 15:227–237

    Google Scholar 

  55. De Torrente A, Miller PD, Cronin RE, Paulsen PE, Erickson AL, Schrier RW (1978) Effects of furosemide and acetylcholine in norepinephrine-induced acute renal failure. Am J Physiol 235:F131-F136

    Google Scholar 

  56. Meyer-Lehnert H, Caramelo C, Tsai P, Schrier RW (1988) Interaction of atriopeptin III and vasopressin on calcium kinetics and contraction of aortic smooth muscle cells. J Clin Invest (in press)

  57. Nakamoto M, Shapiro JI, Shanley PF, Chan L, Schrier RW (1988) In vitro and in vivo protective effect of atriopeptin III on ischemic acute renal failure. J Clin Invest 80:698–705

    Google Scholar 

  58. Malis CD, Bonventre JV (1986) Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for postischemic and toxic mitochondrial damage. J Biol Chem 261:14201–14208

    Google Scholar 

  59. Harris DCH, Hammond WS, Burke TJ, Schrier RW (1987) Verapamil protects against progression of experimental chronic renal failure. Kidney Int 31:41–46

    Google Scholar 

  60. Schrier RW, Arnold PE, Van Putten VJ, Burke TJ (1987) Cellular calcium in ischemic acute renal failure: Role of calcium entry blockers (editorial). Kidney Int 32:313–321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrier, R.W., Hensen, J. Cellular mechanism of ischemic acute renal failure: Role of Ca2+ and calcium entry blockers. Klin Wochenschr 66, 800–807 (1988). https://doi.org/10.1007/BF01728940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728940

Key words

Navigation