Skip to main content
Log in

Analysis of matrix protein gene nucleotide sequence diversity among Newcastle disease virus isolates demonstrates that recent disease outbreaks are caused by viruses of psittacine origin

  • Part B: Molecular Processes Involved In The Evolution Of RNA And DNA Viruses
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Nucleotide sequence analysis was completed for isolates of Newcastle disease virus (NDV; avian paramyxovirus 1) from 1992 outbreaks in cormorants and turkeys. These isolates were of the neurotropic velogenic type. The cormorant and turkey NDV isolates had the fusion protein cleavage sequence109SRGRRQKR/FVG119, as opposed to the consensus sequence109SGGRRQKR/FIG119 of most known velogenic NDV isolates. The R for G substitution at position 110 may be unique for the cormorant and turkey isolates. For comparative purposes, nucleotide sequencing and analysis of the conserved matrix protein gene coding region were completed for isolates representing all pathotypes. Phylogenetic relationships demonstrated that there are two major groups of NDV isolates. One group includes viruses found in North America and worldwide, such as B1, LaSota, Texas/GB, and Beaudette/C. The second group contains isolates, such as Ulster/2C, Australia/Victoria, and Herts/33, considered exotic to North America. Within this second group are viruses of psittacine origin. The viruses from 1992 outbreaks of Newcastle disease in North America, and an isolate thought to have caused the major outbreak in southern California during the 1970s, are most closely related to an NDV isolate of psittacine origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander D.J. in Calnek B.W., Barnes H.J., Beard C.W., Reid W.M., and Yoder H.W. Jr. (eds).Diseases of Poultry, 9th ed. Iowa State University Press, Ames, IA, 1991, pp. 496–519.

    Google Scholar 

  2. Kaletta E.F. and Baldauf C. in Alexander D.J. (ed).Newcastle Disease. Kluwer Academic Publishing, Boston, 1988, pp. 197–265.

    Google Scholar 

  3. Doyle T.M., J Comp Pathol Ther40. 244–169, 1927.

    Google Scholar 

  4. Kraneveld F.C., Ned Indisch Bl Diergeneesk38 448–450, 1926.

    Google Scholar 

  5. Alexander D.J. in Purchase H.G., Arp L.H., Domermuth C.H., and Pearson J.E. (eds).A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd ed. American Association of Avian Pathologists, Kennett Square, PA, 1989, pp. 114–120.

    Google Scholar 

  6. Senne D.A., Pearson J.E., Miller L.D., and Gustafson G.A., Avian Dis27 731–744, 1983.

    Google Scholar 

  7. Bruning-Fann C., Kaneene J., and Heamon J., J Am Vet Med Assoc201 1709–1714, 1992.

    Google Scholar 

  8. Panigrahy B., Senne D.A., Pearson J.E., Mixson M.A., and Cassidy D.R., Avian Dis37 254–258, 1993.

    Google Scholar 

  9. Utterback W.W. and Schwartz J.H., J Am Vet Med Assoc163 1080–1088, 1973.

    Google Scholar 

  10. Schloer G., Infect Immun10 724–732, 1974.

    Google Scholar 

  11. Wobeser G., Leighton F.A., Norman R., Myers D.J., Onderka D., Pybus M.J., Neufeld J.L., Fox G.A., and Alexander D.J., Can Vet J34 353–359, 1993.

    Google Scholar 

  12. Bannerjee M., Reed W.M., Fitzgerald S.D., and Panigraphy B., Avian Dis38 873–878, 1994.

    Google Scholar 

  13. Nagai Y., Klenk H.D., and Rott R., Virology72 494–508, 1976.

    Google Scholar 

  14. Glickman R.L., Syddall R.J., Iorio R.M., Sheehan J.P., and Bratt M.A., J Virol62 354–356, 1988.

    Google Scholar 

  15. Lê Long L., Brasseur R., Wemers C., Meulemans G., and Burny A., Virus Genes1 333–350, 1988.

    Google Scholar 

  16. Gotoh B., Ohnishi Y., Inocencio N.M., Esaki E., Nakayama K., Barr P.J., Thomas G., and Nagai Y., J Virol66 6391–6397, 1992.

    Google Scholar 

  17. Ogasawara T., Gotoh B., Suzuki H., Asaka J., Shimokata K., Rott R., and Nagai Y., EMBO J11 467–472, 1992.

    Google Scholar 

  18. Millar N.S., Chambers P., and Emmerson P.T., J Gen Virol69 613–620, 1988.

    Google Scholar 

  19. Sakaguchi T., Toyoda T., Gotoh B., Inocencio N.M., Kuma K., Miyata T., and Nagai Y., Virology169 260–272, 1989.

    Google Scholar 

  20. Toyoda T., Sakaguchi T., Hirota H., Gotoh B., Kuma K., Miyata T., and Nagai Y., Virology169 273–282, 1989.

    Google Scholar 

  21. Morse S.S.,The Evolutionary Biology of Viruses. Raven Press, New York, 1994.

    Google Scholar 

  22. Afzal M.A., Pickford A.R., Yates P.J., Forsey T., and Minor P.D., J Gen Virol75 1169–1172, 1994.

    Google Scholar 

  23. Rota P.A., Bloom A.E., Vanchiere J.A., and Bellini W.J., Virology198 724–730, 1994.

    Google Scholar 

  24. Cheville N.F., Stone H., Riley J., and Ritchie A.E., J Am Vet Med Assoc161 169–179, 1972.

    Google Scholar 

  25. Schloer G.M. and Hanson R.P., J Virol2 40–47, 1968.

    Google Scholar 

  26. Hitchner S.B., Avian Dis19 215–223, 1975.

    Google Scholar 

  27. Goldhaft T.M., Avian Dis24 297–301, 1980.

    Google Scholar 

  28. McFerran J.B., Gordon W.A.M., and Finlay T., Vet Rec82 589–592, 1968.

    Google Scholar 

  29. French E.L., St. George T.D., and Percy J.J., Aust Vet J43 404–409, 1967.

    Google Scholar 

  30. Sato H., Oh-hira M., Ishida N., Imamura Y., Hattori S., and Kawakita M., Virus Res7 241–255, 1987.

    Google Scholar 

  31. Schaper U.F., Fuller F., Ward M.D., Mehrotra Y., Stone H.O., Stripp B.R., and De-Buysscher, Virology165 291–295, 1988.

    Google Scholar 

  32. Beaudette F.R., Bivins J.A., and Miller B.R., Cornell Vet39 203–334, 1949.

    Google Scholar 

  33. Chambers P., Millar N.S., and Emmerson P.T., J Gen Virol67 2685–2694, 1986.

    Google Scholar 

  34. Chambers P., Millar N.S., Platt S.G., and Emmerson P.T., Nucleic Acids Res14 9051–9061, 1986.

    Google Scholar 

  35. Albiston H.E. and Gorrie C.J.R., Aust Vet J18 75–79, 1942.

    Google Scholar 

  36. McGinnes L.W. and Morrison T., Virus Res5 343–356, 1986.

    Google Scholar 

  37. McGinnes L.W. and Morrison T., Virology156 221–228, 1987.

    Google Scholar 

  38. Alexander D.J. and Allan W.J., Avian Pathol4 269–278, 1974.

    Google Scholar 

  39. Lana D.P., Snyder D.B., King D.J., and Marquardt W.W., Avian Dis32 273–281, 1988.

    Google Scholar 

  40. Chomzcynski P. and Sacchi N., Anal Biochem162 156–159, 1987.

    Google Scholar 

  41. Lewis J.G., Chang G-J., Lanciotti R.S., and Trent D.W., J Virol Methods38 11–24, 1992.

    Google Scholar 

  42. Kotewicz M.L., Sampson C.M., D'Alessio D.E., and Gerard G.F., Nucleic Acids Res16 265–277, 1988.

    Google Scholar 

  43. Sanger F., Nickles S., and Carlson A.R., Proc Natl Acad Sci USA74 5463–5467, 1977.

    Google Scholar 

  44. Smith L.M., Sanders J.Z., Kaiser R.J., Hughs P., Dodd C., Connell C.R., Heines C., Kent S.B.H., and Hood L.E., Nature321 673–681, 1986.

    Google Scholar 

  45. Mead D.A., Pey N.K., Herrnstadt C., Marcil R.A., and Smith L.A., Biotechnology9 657–662, 1991.

    Google Scholar 

  46. Sneath P.H.A. and Sokal R.R.,Numerical Taxonomy. Freeman, San Francisco, 1973.

    Google Scholar 

  47. Swafford D.,PAUP: Phylogenetic Analysis Using Parsimony, Version 3. Illinois Natural History Survey, Champaign, IL, 1989.

    Google Scholar 

  48. Kumar S., Tamura K., and Nei M.,MEGA: Molecular Evolutionary Genetics Analysis, Version 1.01. The Pennsylvania State University, University Park, PA, 1993.

    Google Scholar 

  49. Alexander D.J., Campbell G., Manvell R.J., Collins M.S., Parsons G., and McNulty M.S., Vet Rec130 65–68, 1992.

    Google Scholar 

  50. Collins M.S., Bashiruddin J.B., and Alexander D.J., Arch Virol128 363–370, 1993.

    Google Scholar 

  51. Ina I. and Gojobori T., Proc Natl Acad Sci USA91 8388–8392, 1994.

    Google Scholar 

  52. Faaberg K.S. and Peeples M.E., J Virol62 586–593, 1988.

    Google Scholar 

  53. Coleman N.A. and Peeples M.A., Virology195 596–607, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Seal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, B.S. Analysis of matrix protein gene nucleotide sequence diversity among Newcastle disease virus isolates demonstrates that recent disease outbreaks are caused by viruses of psittacine origin. Virus Genes 11, 217–224 (1995). https://doi.org/10.1007/BF01728661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728661

Key words

Navigation