Skip to main content
Log in

Reverse transcriptase: Mediator of genomic plasticity

  • Part A: Role Of Retrons, Retroelements, And Reverse Transcription In The Evolution Of Retroviruses And In Eukaryotic Genome Plasticity
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Reverse transcription has been an important mediator of genomic change. This influence dates back more than three billion years, when the RNA genome was converted into the DNA genome. While the current cellular role(s) of reverse transcriptase are not yet completely understood, it has become clear over the last few years that this enzyme is still responsible for generating significant genomic change and that its activities are one of the driving forces of evolution. Reverse transcriptase generates, for example, extra gene copies (retrogenes), using as a template mature messenger RNAs. Such retrogenes do not always end up as nonfunctional pseudogenes but form, after reinsertion into the genome, new unions with resident promoter elements that may alter the gene's temporal and/or spatial expression levels. More frequently, reverse transcriptase produces copies of nonmessenger RNAs, such as small nuclear or cytoplasmic RNAs. Extremely high copy numbers can be generated by this process. The resulting reinserted DNA copies are therefore referred to asshort interspersed repetitive elements (SINEs). SINEs have long been considered selfish DNA, littering the genome via exponential propagation but not contributing to the host's fitness. Many SINEs, however, can give rise to novel genes encoding small RNAs, and are the migrant carriers of numerous control elements and sequence motifs that can equip resident genes with novel regulatory elements [Brosius J. and Gould S.J., Proc Natl Acad Sci USA89, 10706–10710, 1992]. Retrosequences, such as SINEs and portions of retroelements (e.g., long terminal repeats, LTRs), are capable of donating sequence motifs for nucleosome positioning, DNA methylation, transcriptional enhancers and silencers, poly(A) addition sequences, determinants of RNA stability or transport, splice sites, and even amino acid codons for incorporation into open reading frames as novel protein domains. Retroposition can therefore be considered as a major pacemaker for evolution (including speciation). Retroposons, with their unique properties and actions, form the molecular basis of important evolutionary concepts, such as exaptation [Gould S.J. and Vrba E., Paleobiology8, 4–15, 1982] and punctuated equilibrium [Elredge N. and Gould S.J. in Schopf T.J.M. (ed).Models in Paleobiology. Freeman, Cooper, San Francisco, 1972, pp. 82–115].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temin H.M. and Mitztani S., Nature226 1211–1213, 1970.

    Google Scholar 

  2. Baltimore D., Nature226 1209–1211, 1970.

    Google Scholar 

  3. Doolittle R.F. and Feng D.F., Curr Top Microbiol Immunol176 195–211, 1992.

    Google Scholar 

  4. Temin H.M., Cell21 599–600, 1980.

    Google Scholar 

  5. Flavell A.J., Comp Biochem Physiol Biochem Mol Biol110 3–15, 1995.

    Google Scholar 

  6. Woese C.R.,The Origins of the Genetic Code. Harper & Row, New York, 1967.

    Google Scholar 

  7. Crick F., J Mol Biol38 367–379, 1968.

    Google Scholar 

  8. Orgel L., J Mol Biol38 381–393, 1968.

    Google Scholar 

  9. Gilbert W., Nature319 618, 1986.

    Google Scholar 

  10. Eigen M. and Schuster P., J Mol Evol19 47–61, 1982.

    Google Scholar 

  11. Darnell J.E. and Doolittle W.F., Proc Natl Acad USA83 1271–1275, 1986.

    Google Scholar 

  12. Maizels N. and Weiner A.M., Proc Natl Acad Sci USA91 6729–6734, 1994.

    Google Scholar 

  13. Blackburn, E.H., Annu Rev Biochem61 113–129, 1992.

    Google Scholar 

  14. Dombroski B.A., Mathias S.L., Nanthakumar E., Scott A.F., and Kazazian H.H. Jr., Science254 1805–1808, 1991.

    Google Scholar 

  15. Mathias S.L., Scott A.F., Kazazian H.H. Jr., Boeke J.D., and Gabriel A., Science254 1808–1810, 1991.

    Google Scholar 

  16. Inouye S., Hsu M.-Y., Eagle S., and Inouye M., Cell56 709–717, 1989.

    Google Scholar 

  17. Lampson B.C., Sun J., Hsu M.-Y., Vallejo-Ramirez J., Inouye S., and Inouye M., Science243 1033–1038, 1989.

    Google Scholar 

  18. Lim D. and Maas W.K., Cell56 891–904, 1989.

    Google Scholar 

  19. Temin H.M., Nature339 254–255, 1989.

    Google Scholar 

  20. Temin H.M., Perspect Biol Med14 11–26, 1970.

    Google Scholar 

  21. Jacob F., Science196 1161–1166, 1977.

    Google Scholar 

  22. Jacob F., inEvolution from Molecules to Men. Bendall D.S. (ed). Cambridge University Press, Cambridge, 1983, pp. 131–144.

    Google Scholar 

  23. Scarpulla R.C., Mol Cell Biol4 2279–2288, 1984.

    Google Scholar 

  24. Georgiev G.P., Eur J Biochem145 203–220, 1984.

    Google Scholar 

  25. Baltimore D., Cell40 481–482, 1985.

    Google Scholar 

  26. McDonald J.F., BioScience40 183–191, 1990.

    Google Scholar 

  27. McDonald J.F., Curr Opin Genet Dev3 855–864, 1993.

    Google Scholar 

  28. Steele E.J. and Pollard J.W., Mol Immunol24 667–673, 1987.

    Google Scholar 

  29. Steele E.J.,Somatic Selection and Adaptive Evolution. On the Inheritance of Acquired Characters. University of Chicago Press, Chicago, 1979.

    Google Scholar 

  30. Cairns J., Overbaugh J., and Miller S., Nature289 353–357, 1988.

    Google Scholar 

  31. Koch A.L., Genetics72 297–316, 1988.

    Google Scholar 

  32. Rigby P.J.J., Burleigh B.D. Jr., and Hartley B.S., Nature251 200–204, 1974.

    Google Scholar 

  33. McClintock B.,The Discovery and Characterization of Transposable Elements: The Collected Papers of Barbara McClintock. Garland, New York, 1987.

  34. Gould S.J. and Vrba E., Paleobiology8 4–15, 1982.

    Google Scholar 

  35. Linial M., Cell49 93–102, 1987.

    Google Scholar 

  36. Dornburg R. and Temin H.M., Mol Cell Biol8 2328–2334, 1988.

    Google Scholar 

  37. Carlton M.B., Colledge W.H., and Evans M.J., Mamm Genome6 90–95, 1995.

    Google Scholar 

  38. Tchénio T., Segal-Bendirdjian E., and Heidmann T., EMBO J12 1487–1497, 1993.

    Google Scholar 

  39. Labuda D., Zietkiewicz E., and Mitchell G.A., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 1–24.

    Google Scholar 

  40. Lehrman M.A., Schneider W.J., Südhof T.C., Brown M.S., Goldstein J.L., and Russell D.W., Science227 140–146, 1985.

    Google Scholar 

  41. Muratani K., Hada T., Yamamoto Y., Kaneko T., Shigeto Y., Ohue T., Furuyama J., and Higashino K., Proc Natl Acad Sci USA88 11315–11319, 1991.

    Google Scholar 

  42. Amariglio N. and Rechavi G., Envir Mol Mutagen21 212–218, 1993.

    Google Scholar 

  43. Wilke C.M., Maimer E., and Adams J., Genetica86 155–173, 1992.

    Google Scholar 

  44. Woodruff R.C., Genetica86 143–154, 1992.

    Google Scholar 

  45. Kim A., Terzian C., Santamaria P., Pelisson A., Prud'homme N., and Bucheton A., Proc Natl Acad Sci USA91 1285–1289, 1994.

    Google Scholar 

  46. Weiner A.M., Deininger P.L., and Efstratiadis A., Annu Rev Biochem55 631–661, 1986.

    Google Scholar 

  47. Britten R.J. and Davidson E.H., Science165 349–357, 1969.

    Google Scholar 

  48. Britten R.J. and Davidson E.H., Q Rev Biol46 111–133, 1971.

    Google Scholar 

  49. Singer M.F., Cell28 433–434, 1982.

    Google Scholar 

  50. Doolittle W.F. and Sapienza C., Nature284 601–603, 1980.

    Google Scholar 

  51. Orgel L.E. and Crick F.H.C., Nature284 604–607, 1980.

    Google Scholar 

  52. Deininger P., in Howe M. and Berg D. (eds).Mobile DNA. ASM Publications, 1989, pp. 619–636.

  53. Deininger P.L., Batzer M.A., Hutchison C.A. III, and Edgell M.H., Trends Genet8 307–311, 1992.

    Google Scholar 

  54. Deininger P., Tiedge H., Kim J., and Brosius J., Prog Nucleic Acids Res Mol Biol52 67–88, 1996.

    Google Scholar 

  55. Schmid C.W. and Maraia R., Curr Opin Genet Dev2 874–882, 1992.

    Google Scholar 

  56. Deininger P.L. and Batzer M.A., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 43–60.

    Google Scholar 

  57. Kim J., Martignetti J.A., Shen M.R., Brosius J., and Deininger P.L., Proc Natl Acad Sci USA91 3607–3611, 1994.

    Google Scholar 

  58. Kim J., Kass D.H., and Deininger P.L., Nucleic Acids Res23 2245–2251, 1995.

    Google Scholar 

  59. Rogers J., Int Rev Cytol93 187–279, 1985.

    Google Scholar 

  60. Piechaczyk M., Blanchard J.M., Riaad-El Sabouty S., Dani C., Marty L., and Jeanteur P., Nature312 469–471, 1984.

    Google Scholar 

  61. Ullu E. and Weiner A.M., EMBO J3 3303–3310, 1984.

    Google Scholar 

  62. Okada N., Curr Opin Genet Dev1 498–504, 1993.

    Google Scholar 

  63. Ohshima K. and Okada N., J Mol Biol243 25–27, 1994.

    Google Scholar 

  64. Okada N. and Ohshima K., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 61–79.

    Google Scholar 

  65. Charlesworth B., Sniegowski P., and Stephan W., Nature371 215–220, 1994.

    Google Scholar 

  66. Howard B.H. and Sakamoto B.H., New Biol2 759–770, 1990.

    Google Scholar 

  67. Brosius J., Science252 753, 1991.

    Google Scholar 

  68. Brosius J. and Gould S.J., Proc Natl Acad Sci USA89 10706–10710, 1992.

    Google Scholar 

  69. Zuckerkandl E., J Mol Evol34 259–271, 1992.

    Google Scholar 

  70. Banville D., Rotaru M., and Boie Y., Genetica86 85–97, 1992.

    Google Scholar 

  71. Shapiro J.A., Genetica86 99–111, 1992.

    Google Scholar 

  72. King C.C., Genetica86 99–111, 1992.

    Google Scholar 

  73. Robins D.M. and Samuelson L.C., Genetica86 191–201, 1992.

    Google Scholar 

  74. von Sternberg R.M., Novick G.E., Gao G.-P., and Herera R.J., Genetica86 215–246, 1992.

    Google Scholar 

  75. Hickey D.A., Genetica86 269–274, 1992.

    Google Scholar 

  76. Wichman H.A., van den Busche R.A., Hamilton M.J., and Baker R.J., Genetica86 287–293, 1992.

    Google Scholar 

  77. Nouvel P., Genetica93 191–201, 1994.

    Google Scholar 

  78. Novak R., Science263 608–610, 1994.

    Google Scholar 

  79. Maraia R.J. (ed).,The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995.

    Google Scholar 

  80. Brosius J. and Gould S.J., Nature365 102, 1993.

    Google Scholar 

  81. Lewis E.B., Cold Spring Harbor Symp Quant Biol16 159–174, 1951.

    Google Scholar 

  82. Ohno S.,Evolution by Gene Duplication. Springer, New York, 1970.

    Google Scholar 

  83. Zuckerkandl E., Biochimie54 1095–1102, 1972.

    Google Scholar 

  84. Gilbert W., Nature271 501, 1978.

    Google Scholar 

  85. Parma J., Christophe D., Pohl V., and Vassart G., J Mol Biol196 769–779, 1987.

    Google Scholar 

  86. Keese P.K. and Gibbs A., Proc Natl Acad Sci USA89 9849–9493, 1992.

    Google Scholar 

  87. White S.H. and Jacobs R.E., J Mol Evol36 79–95, 1993.

    Google Scholar 

  88. White S.H., J Mol Evol38 383–394, 1994.

    Google Scholar 

  89. Makalowski W., Mitchell G.A., and Labuda D., Trends Genet10 188–193, 1994.

    Google Scholar 

  90. Makalowski W., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 81–104.

    Google Scholar 

  91. Ashworth A., Skene B., Swift S., and Lovell-Badge R., EMBO J9 1529–1534, 1990.

    Google Scholar 

  92. Persson K., Holm I., and Heby O., J Biol Chem270 5642–5648, 1995.

    Google Scholar 

  93. Fourel G., Trepo C., Bougueleret L., Henglein B., Ponzetto A., Tiollais P., and Buendia M.A., Nature347 294–298, 1990.

    Google Scholar 

  94. Soares M.B., Schon E., Henderson A., Karathanasis S.K., Cate R., Zeitlin S., Chirgwin J., and Efstratiadis A., Mol Cell Biol5 2090–2103, 1985.

    Google Scholar 

  95. Clark B.D., Collins K.L., Gandy M.S., Webb A.C., and Auron P.E., Nucleic Acids Res.14 7897–7914, 1986.

    Google Scholar 

  96. O'Brien S.J.,Genetic Maps. Book 5, Human Maps. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990.

    Google Scholar 

  97. Wilkie T.M., Gilbert D.J., Olsen A.S., Chen X.-N., Armatruda T.T., Korenberg J.R., Trask B.J., de Jong P., Reed R.R., Simon M.I., Jenkins N.A., and Copeland N.G., Nature Genet1 85–91, 1992.

    Google Scholar 

  98. Dyer M.R., Gay N.J., and Walker J.E., Biochem J260 249–258, 1989.

    Google Scholar 

  99. McCarrey J.R. and Thomas K., Nature526 501–505, 1987.

    Google Scholar 

  100. Boer P.H., Adra C.N., Lau Y.-F., and McBurney M.W., Mol Cell Biol7 3107–3112, 1987.

    Google Scholar 

  101. Adra C.N., Ellis N.A., and McBurney M.W., Somat Cell Mol Genet14 69–81, 1988.

    Google Scholar 

  102. McCarrey J.R., Nucleic Acids Res18 949–944, 1990.

    Google Scholar 

  103. Carlson D.P. and Ross J., Proc Natl Acad Sci USA81 7782–7786, 1984.

    Google Scholar 

  104. Allan M. and Paul J., Nucleic Acids Res12 1193–1200, 1984.

    Google Scholar 

  105. Arai Y., Mukai T., and Hori K., Biochim Biophys Acta1007 91–98, 1989.

    Google Scholar 

  106. Luoh S.-W. and Page D., Genomics19 310–319, 1994.

    Google Scholar 

  107. Dahl H.-H.M., Brown R.M., Hutchison W.M., Maragos C., and Brown G.K., Genomics8 225–232, 1990.

    Google Scholar 

  108. Brown R.M., Dahl H.-H.M., and Brown G.K., Somat Cell Mol Genet16 487–492, 1990.

    Google Scholar 

  109. Fitzgerald J., Hutchison W.M., and Dahl H.-H.M., Biochim Biophys Acta1131 83–90, 1992.

    Google Scholar 

  110. Fitzgerald J., Wilcox S.A., Marshall-Graves J.A., and Dahl H.-H.M., Genomics18 636–642, 1993.

    Google Scholar 

  111. Shashidharan P., Michaelidis T.M., Robakis N.K., Kresovali A., Papamatheakis J., and Plaitakis A., J Biol Chem269 16971–16976, 1994.

    Google Scholar 

  112. Monesi V., J Reprod Fertil13 1–14, 1971.

    Google Scholar 

  113. Sugiyama A., Kume A., Nemoto K., Lee S.Y., Asami Y., Nemoto F., Nishimura S., and Kuchino Y., Proc Natl Acad Sci USA86 9144–9148, 1989.

    Google Scholar 

  114. Morton C.C., Nussenzweig M.C., Sousa R., Sorenson G.D., Pettengill O.S., and Shows T.B., Genomics4 367–375, 1989.

    Google Scholar 

  115. Sugiyama A., Miyagi Y., Shirasawa Y., and Kuchino Y., Oncogene6 2027–2032, 1989.

    Google Scholar 

  116. Zimmerman K.A., Yancopoulos G.D., Collum R.G., Smith R.K., Kohl N.E., Denis K.A., Nau M.M., Witte O.N., Toran-Allerand D., Gee C.E., Minna J.D., and Alt F.W., Nature319 780–783, 1986.

    Google Scholar 

  117. Fourel G., Transy C., Tennant B.C., and Buendia M.A., Mol Cell Biol12 5336–5344, 1992.

    Google Scholar 

  118. Sturm R.A. and Herr W., Nature336 601–604, 1988.

    Google Scholar 

  119. Sturm R.A., Cassady J.L., Das G., Romo A., and Evans G.A., Genomics16 333–3341, 1993.

    Google Scholar 

  120. Kuhn R., Monuki E.S., and Lemke G., Mol Cell Biol11 4642–4650, 1991.

    Google Scholar 

  121. Hara Y., Rovescalli A.C., Kim Y., and Nirenberg M., Proc Natl Acad Sci USA89 3280–3284, 1992.

    Google Scholar 

  122. Theil T., Zechner U., Klett C., Adolph S., and Moroy T., Cytogenet Cell Genet66 267–271, 1994.

    Google Scholar 

  123. Nojima H., J Mol Biol208 269–282, 1989.

    Google Scholar 

  124. Fischer R., Koller M., Flura M., Mathews S., Strehler-Page M.-A., Krebs J., Penniston J.T., Carafoli E., and Strehler E.E., J Biol Chem263 17055–17062, 1988.

    Google Scholar 

  125. Stein J.P., Munjaal R.P., Lagace L., Lai E.C., O'Malley B.W., and Means A.R., Proc Natl Acad Sci USA80 6485–6489, 1983.

    Google Scholar 

  126. Putkey J.A., Carroll S.L., and Means A.R., Mol Cell Biol7 1549–1553, 1987.

    Google Scholar 

  127. Koller M. and Strehler E.E., FEBS Lett239 121–128, 1988.

    Google Scholar 

  128. Yaswen P., Smoll A., Hosuda J., Parry G., and Stampfer M.R., Cell Growth Differ3 335–345, 1992.

    Google Scholar 

  129. Lewin R., Science219 1052–1054, 1983.

    Google Scholar 

  130. Rhyner J.A., Koller M., Durussel-Gerber I., Cox J.A., and Strehler E.E., Biochemistry31 12826–12832, 1992.

    Google Scholar 

  131. Edman C.F., George S.E., Means A.R., Schulman H., and Yaswen P., Eur J Biochem226 725–730, 1994.

    Google Scholar 

  132. Harris E., Yaswen P., and Thorner J., Mol Gen Genet247 137–147, 1995.

    Google Scholar 

  133. Linnenbach A.J., Seng B.A., Wu S., Robbins S., Scollon M., Pyrc J.J., Druck T., and Huebner K., Mol Cell Biol13 1507–1515, 1993.

    Google Scholar 

  134. Renaudie F., Yachou A.-K., Grandchamp B., Jones R., and Beaumont C., Mamm Genome2 143–149, 1992.

    Google Scholar 

  135. Devilat I. and Carvello P., FEBS Lett316 114–118, 1993.

    Google Scholar 

  136. Sargent C.A., Young C., Marsh S., Ferguson-Smith M.A., and Affara N.A., Hum Mol Genet3 1317–1324, 1994.

    Google Scholar 

  137. Wiese S., Murphy D.B., Schlung A., Burfeind P., Schmundt D., Schnülle V., Mattei M.-G., and Thies U., Biochim Biophys Acta1262 105–112, 1995.

    Google Scholar 

  138. Wenger R.H., Kieffer N., Wicki A.N., and Clemetson K.J., Biochem Biophys Res Comm156 389–395, 1991.

    Google Scholar 

  139. Bhandari B., Roesler W.J., DeLisio K.D., Klemm D.J., Ross N.S., and Miller R.E., J Biol Chem266 7784–7792, 1991.

    Google Scholar 

  140. Chakrabarti R., McCracken J.B., Chakrabarti D., and Souba W.W., Gene153 163–199, 1995.

    Google Scholar 

  141. Bard J.A., Nawoschik S.P., O'Dowd B.F., George S.R., Branchek T.A., and Weinshank R.L., Gene153 295–296, 1995.

    Google Scholar 

  142. Nugent J.M. and Palmer J.D., Cell66 473–481, 1991.

    Google Scholar 

  143. Long M. and Langley C.H., Science260 91–95, 1993.

    Google Scholar 

  144. Fink G.R., Cell49 5–6, 1988.

    Google Scholar 

  145. Derr L.K. and Strathern J.N., Nature361 170–173, 1993.

    Google Scholar 

  146. Hamann K.J., Ten R.M., Loegering D.A., Jenkins R.B., Heise M.T., Schad C.R., Pease L.R., Gleich G.J., and Barker R.L., Genomics7 535–546, 1990.

    Google Scholar 

  147. Kedes L.H., Annu Rev Biochem48 837–870, 1979.

    Google Scholar 

  148. Hentschel C.C. and Birnstiel M.L., Cell25 301–313, 1981.

    Google Scholar 

  149. Nagata S., Mantei N., and Weissman C., Nature287 401–408, 1980.

    Google Scholar 

  150. Lawn R.M., Adelman J., Frank A.E., Houck C.H., Gross M., Najarian R., and Goeddel D.V., Nucleic Acids Res9 1045–1052, 1981.

    Google Scholar 

  151. Henco K., Brosius J., Fujisawa A., Fujisawa J.-I., Haynes J.R., Hochstadt J., Kovacic T., Pasek M., Schamböck A., Schmid J., Todokoro K., Wälchli M., Nagata S., and Weissman C., J Mol Biol185 227–260, 1985.

    Google Scholar 

  152. Strong M., Chandy K.G., and Gutman G.A., Mol Biol Evol10 221–242, 1993.

    Google Scholar 

  153. Dal Toso R., Sommer B., Ewert M., Herb A., Pritchett D.B., Bach A., Shivers B.D., and Seeburg P.H., EMBO J.8 4025–4034, 1989.

    Google Scholar 

  154. Kobilka B.K., Frielle T., Collins S., Yang-Feng T., Kobilka T.S., Francke U., Lefkowitz R.J., and Caron M.G., Nature329 75–79, 1987.

    Google Scholar 

  155. Sunahara R.K., Niznik H.B., Weiner D.M., Stormann T.M., Brann M.R., Kennedy J.L., Gelernter J.E., Rozmahel R., Yang Y., Israel Y., Seeman P., and O'Dowd B.F., Nature347 80–83, 1990.

    Google Scholar 

  156. Grandy D.K., Zhang Y., Bouvier C., Zhou Q.-Y., Johnson R.A., Allen L., Buck K., Bunzow J.R., Salon J., and Civelli, O., Proc Natl Acad Sci USA88 9175–9179, 1991.

    Google Scholar 

  157. Buck L. and Axel R., Cell65 175–187, 1991.

    Google Scholar 

  158. DeChiara T.M. and Brosius J., Proc Natl Acad Sci USA84 2624–2628, 1987.

    Google Scholar 

  159. Watson J.B. and Sutcliffe J.G., Mol Cell Biol7 3324–3327, 1987.

    Google Scholar 

  160. Martignetti J.A. and Brosius J., Proc Natl Acad Sci USA90 9698–9702, 1993.

    Google Scholar 

  161. Martignetti J.A. and Brosius J., Proc Natl Acad Sci USA90 11563–11567, 1993.

    Google Scholar 

  162. Tiedge H., Chen W., and Brosius J., Neurosci13 2382–2390, 1993.

    Google Scholar 

  163. Martignetti J.A. and Brosius J., Mol Cell Biol15 1642–1650, 1995.

    Google Scholar 

  164. Tiedge H., Fremeau R.T. Jr., Weinstock P.H., Arancio O., and Brosius J., Proc Natl Acad Sci USA88 2093–2097, 1991.

    Google Scholar 

  165. Tiedge H., Zhou A., Thorn N., and Brosius J., J Neurosci13 4214–4219, 1993.

    Google Scholar 

  166. Russo T., Costanzo F., Oliva A., Ammendola R., Duilio A., Esposito F., and Cimino F., Eur J Biochem158 437–442, 1986.

    Google Scholar 

  167. Brosius J. and Tiedge H., inLocalized RNAs. Lipshitz H.D. (ed). R.G. Landes, Austin, TX, 1995, 289–300.

    Google Scholar 

  168. Steward O. and Banker G.A., Trends Neurosci15 180–186, 1992.

    Google Scholar 

  169. Steward O., Proc Natl Acad Sci USA91 10766–10768, 1994.

    Google Scholar 

  170. Kobayashi S., Goto S., and Anzai K., J Biol Chem226 4726–4730, 1991.

    Google Scholar 

  171. Cheng J.-G., Tiedge H., and Brosius J., Soc Neurosci Abstr17 379, 1992.

    Google Scholar 

  172. Cheng J.-G., Tiedge H., and Brosius J., DNA Cell Biol, 1996, in press.

  173. Labuda D. and Zietkiewicz E., J Mol Evol39 506–518, 1994.

    Google Scholar 

  174. Maraia R.J. and Sarrowa J., in: Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 163–196.

    Google Scholar 

  175. Bovia F., Fornallaz M., Leffers H., and Strub K., Mol Cell Biol15, 1995, in press.

  176. Fuke M., Hendrix L.C., and Bollon A.P., Gene32 135–140, 1984.

    Google Scholar 

  177. Seiser C., Beck G., and Wintersberger E., FEBS Lett270 123–126, 1990.

    Google Scholar 

  178. Adrey N.B., Tollefsbol T.O., Sparks A.B., Edgell M.H., and Hutchison C.A. III, Proc Natl Acad Sci USA91 1569–1573, 1994.

    Google Scholar 

  179. Reynaud C.-A., Anquez V., Grimal H., and Weill J.-C., Cell48 379–388, 1987.

    Google Scholar 

  180. McCormack W.T., Hurley E.A., and Thompson C.B., Mol Cell Biol13 821–830, 1993.

    Google Scholar 

  181. Longacre S. and Eisen H., EMBO J5 1057–1063, 1986.

    Google Scholar 

  182. Roth C., Longacre S., Raibaud A., Baltz T., and Eisen H., EMBO J5 1065–1070, 1986.

    Google Scholar 

  183. Roth C., Bringaud F., Layden R.E., Baltz T., and Eisen H., Proc Natl Acad Sci USA86 9375–9379, 1989.

    Google Scholar 

  184. Stenzel-Poore M.P. and Rittenberg M.B., J Immunol138 3055–3059, 1987.

    Google Scholar 

  185. Marshall C.R., Raff E.C., and Raff R.A., Proc Natl Acad Sci USA91 12283–12287, 1994.

    Google Scholar 

  186. Kim J.H., Yu C.-Y., Bailey A., Hardison R., and Shen C.-K.J., Nucleic Acids Res17 5687–5700, 1989.

    Google Scholar 

  187. Hakim I., Amariglio N., Grossman Z., Simoni-Brok F., Ohno S., and Rechavi G., Proc Natl Acad Sci USA91 7967–7969, 1994.

    Google Scholar 

  188. Liu W.M. and Schmid C., Nucleic Acids Res21 1351–1359, 1993.

    Google Scholar 

  189. Kochanek S., Renz D., and Doerfler W., EMBO J12 1141–1151, 1993.

    Google Scholar 

  190. Schmid C.W. and Rubin C.M., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 105–123.

    Google Scholar 

  191. Humphrey G.W., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 195–222.

    Google Scholar 

  192. Bird P.A., Cell70 5–8, 1992.

    Google Scholar 

  193. Tomilin N.V., Bozhkov V.M., Bradbury E.M., and Schmid C.W., Nucleic Acids Res20 2941–2945, 1992.

    Google Scholar 

  194. Cockerill P.N., Nucleic Acids Res18 2643–2648, 1990.

    Google Scholar 

  195. Englander E.W., Wolffe A.P., and Howard B.H., J Biol Chem268 19565–19573, 1993.

    Google Scholar 

  196. Englander E.W. and Howard B.H., J Biol Chem270 10091–10096, 1995.

    Google Scholar 

  197. Howard B.H., Russanova V.R., and Englander E.W., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 133–141.

    Google Scholar 

  198. Valgeirdottír K., Traverse-Lahey K., and Pardue M.L., Proc Natl Acad Sci USA87 7998–8002, 1990.

    Google Scholar 

  199. Levis R.W., Ganesan R., Houtchens K., Tolar L.A., and Sheen F.-M., Cell75 1083–1093, 1993.

    Google Scholar 

  200. Panning B. and Smiley J.R., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 143–161.

    Google Scholar 

  201. Gilbert W., Science228 823–824, 1985.

    Google Scholar 

  202. Gilbert W., Cold Spring Harbor Symp Quant Biol52 901–905, 1987.

    Google Scholar 

  203. Matsuo K., Clay O., Kunzler P., Georgiev O., Urbanek P., and Schaffner W., Biol Chem Hoppe Seyler375 675–683, 1994.

    Google Scholar 

  204. Brookfield J.F.Y., Curr Biol5 255–256, 1995.

    Google Scholar 

  205. Emi M., Hori A., Tomita N., Nishide T., Ogawa M., Mori T., and Matsubara K., Gene62 229–235, 1988.

    Google Scholar 

  206. Samuelson L., Wiebauer K., Snow C.M., and Meisler M.H., Mol Cell Biol10 2513–2520, 1990.

    Google Scholar 

  207. Ting C.-N., Rosenberg M.P., Snow C.M., Samuelson L.C., and Meisler M.H., Genes Dev6 1457–1465, 1992.

    Google Scholar 

  208. Stavenhagen J.B. and Robins D.M., Cell55 247–254, 1988.

    Google Scholar 

  209. Jankowski J.M., States J.C., and Dixon G.H., J Mol Evol23 1–10, 1986.

    Google Scholar 

  210. Corces V.G. and Geyer P.K., Trends Genet7 86–90, 1991.

    Google Scholar 

  211. White S.E., Habera L.F., and Wessler S.R., Proc Natl Acad Sci USA91 11792–11796, 1994.

    Google Scholar 

  212. He X.-P., Bataillé N., and Fried H.M., J Cell Sci107 903–912, 1994.

    Google Scholar 

  213. Hull M.W., Erickson J., Johnston M., and Engelke D.R., Mol Cell Biol14 1266–1277, 1994.

    Google Scholar 

  214. Clemens M.J., Cell49 157–158, 1987.

    Google Scholar 

  215. Vidal F. and Cuzin F., in Maraia R. (ed).The Impact of Short Interspersed Elements (SINEs) on the Host Genome. R.G. Landes, Austin, TX, 1995, pp. 125–131.

    Google Scholar 

  216. Smit A.F.A. and Riggs A.D., Nucleic Acids Res23 98–102, 1995.

    Google Scholar 

  217. Jurka J., Zietkiewicz, and Labuda D., Nucleic Acids Res23 170–175, 1995.

    Google Scholar 

  218. Murnane J.P. and Morales J.F., Nucleic Acids Res23 2837–2839, 1995.

    Google Scholar 

  219. Tomilin N.V. and Bozhkov V.M., FEBS Lett251 79–83, 1989.

    Google Scholar 

  220. Tomilin N.V., Iguchi-Ariga S.M.M., and Ariga H., FEBS Lett263 69–72, 1990.

    Google Scholar 

  221. Gambari R., Volina S., Nesti C., Scapoli C., and Barra I., CABIOS10 501–508, 1994.

    Google Scholar 

  222. Pesce C.G., Rossi M.S., Muro A.F., Reig O.A., Zorzópoulos J., and Kornblith A.R., Nucleic Acids Res22 656–661, 1994.

    Google Scholar 

  223. Boyko V., Mudrak O., Svetlova M., Negishi Y., Ariga H., and Tomilin N., FEBS Lett345 139–142, 1994.

    Google Scholar 

  224. Schäfer U., Rausch O., Bouwmeester T., and Pieler T., Eur J Biochem226 567–576, 1994.

    Google Scholar 

  225. Vansant G. and Reynolds W., Proc. Natl Acad Sci USA92 8229–8233, 1995.

    Google Scholar 

  226. Zierler M., Christy R.J., and Huang R.C.C., J Biol Chem267 21200–21206, 1992.

    Google Scholar 

  227. Cho K.-O., Minsk B., and Wagner J.A., Proc Natl Acad Sci USA87 3778–3782, 1990.

    Google Scholar 

  228. Kermekchiev M., Pettersson M., Matthias P., and Schaffner W., Gene Expr1 71–81, 1991.

    Google Scholar 

  229. Sutcliffe J.G., Milner R.J., Gottesfeld J.M., and Reynolds W., Science225 1308–1315, 1984.

    Google Scholar 

  230. Elredge N. and Gould S.J., in Schopf T.J.M. (ed).Models in Paleobiology. Freeman, Cooper, San Francisco, 1972, pp. 82–115.

    Google Scholar 

  231. Gould S.J. and Elredge N., Nature366 223–227, 1993.

    Google Scholar 

  232. Paulson K.E., Matera A.G., Deka N., and Schmid C.W., Nucleic Acids Res13 5199–5215, 1987.

    Google Scholar 

  233. Banville D. and Boie Y., J Mol Biol207 481–490, 1989.

    Google Scholar 

  234. Chang-Yeh A., Mold D.E., and Huang R.C.C., Nucleic Acids Res19 3667–3672, 1991.

    Google Scholar 

  235. Feuchter A.E., Freeman J.D., and Mager D.L., Genomics13 1237–1246, 1992.

    Google Scholar 

  236. Goodchild N.L., Wilkinson D.A., and Mager D.L., Gene121 287–294, 1992.

    Google Scholar 

  237. Mager D.L., Virology173 591–599, 1989.

    Google Scholar 

  238. Feuchter-Murthy A.E., Freeman J.D., and Mager D.L., Nucleic Acids Res21 135–143, 1993.

    Google Scholar 

  239. Liu A.Y. and Abraham B.A., Cancer Res51 4107–4110, 1991.

    Google Scholar 

  240. Baumruker T., Gehe C., and Horak I., Nucleic Acids Res16 7241–7251, 1988.

    Google Scholar 

  241. Matsumine H., Herbst M.A., Ou S.-H.I., Wilson J.D., and McPhaul M.J., J Biol Chem266 19900–19907, 1991.

    Google Scholar 

  242. Baniahmad A., Muller M., Steiner C., and Renkawitz R., EMBO J6 2297–2303, 1987.

    Google Scholar 

  243. Harendza C.J. and Johnson L.F., Proc Natl Acad Sci USA87 2531–2535, 1990.

    Google Scholar 

  244. Laimins L., Holmgren-König M., and Khoury G., Proc Natl Acad Sci USA83 3151–3155, 1986.

    Google Scholar 

  245. Pérez M.J., Leroux C., Bonastre A.S., and Martin P., Gene147 179–187, 1994.

    Google Scholar 

  246. Banki K., Halladay D., and Perl A., J Biol Chem269 2847–2851, 1994.

    Google Scholar 

  247. Keshet E., Schiff R., and Itin A., Adv Cancer Res56 215–251, 1990.

    Google Scholar 

  248. Lewin R., Science240 603, 1988.

    Google Scholar 

  249. Temin H.M., J Natl Cancer Inst46 iii-vii, 1971.

    Google Scholar 

  250. Robertson N.G., Pomponio R.J., Mutter G.L., and Morton C.C., Nucleic Acids Res19 3129–3137, 1991.

    Google Scholar 

  251. Deragon J.-M., Landry B.S., Pélissier T., Tutois S., Tourmente S., and Picard G., J Mol Evol39 378–386, 1994.

    Google Scholar 

  252. McDonald J.F., Trends Ecol Evol10 123–126, 1995.

    Google Scholar 

  253. Chesnokov I.N. and Schmid C.W., J Biol Chem270 18539–18542, 1995.

    Google Scholar 

  254. Kaplan F.S., Murray J., Sylvester J.E., Gonzales I.L., O'Connor J.P., Doering J.L., Muenke M., Emanuel B.S., and Zasloff M.A., Genomics15 123–132, 1993.

    Google Scholar 

  255. Rubin C.M., VandeVoort C.A., Teplitz R.L., and Schmid C.W., Nucleic Acids Res22 5121–5127, 1994.

    Google Scholar 

  256. Liu W.-M., Chu W.-M., Choudary P.V., and Schmid C.W., Nucleic Acids Res23 1758–1765, 1995.

    Google Scholar 

  257. Goldschmidt R.,The Material Basis of Evolution, Yale University Press, New Haven, CT, 1940.

    Google Scholar 

  258. Harris J.R., FEBS Lett295 3–4, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Brosius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brosius, J., Tiedge, H. Reverse transcriptase: Mediator of genomic plasticity. Virus Genes 11, 163–179 (1995). https://doi.org/10.1007/BF01728656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728656

Key words

Navigation