Skip to main content
Log in

Fundamentals of feedback control applied to microcomputer instrumentation design

  • Published:
International journal of clinical monitoring and computing

Summary

Feedback control is widely used in applications which range from simple control of room temperature to very sophisticated control of space flight. This paper describes some fundamentals of feedback control as they apply specifically to microcomputer based medical devices. A classical controller is described in its analog and digital implementations. Reference is made to methods for adjusting or tuning the controller for specific applications. Successful applications of adaptive or self-tuning control are discussed. Examples of feedback control include systems to control arterial blood pressure by the infusion of sodium nitropruside, systems to control arterial carbon dioxide concentration by mechanical ventilation and systems to control depth of anesthesia by controlled anesthesia delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Analogic Industrial Technology Group: Monitroller ™I.

  2. Arnsparger JM, McInnis BC, Glover JR, and Normann NA: Adaptive control of blood pressure. IEEE Trans Biomed Eng 30: 168–176, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Astrom KJ: Process control — past, present, and future. IEEE Cont August: 3–10, 1985.

  4. Astrom KJ: Introduction to Stochastic Control Theory. New York, Academic Press, Inc., 1970.

    Google Scholar 

  5. Auer LM, and Rodler H: Microprocessor -control of drug infusion for automatic blood-pressure control: Med & Biol Eng & Comput 19: 171–174, 1981.

    Article  CAS  Google Scholar 

  6. Bennett S, and Linkens DA: Real-Time Computer Control. London, Peregrinus, 1984.

    Google Scholar 

  7. Chilcoat RT, Lunn JN, and Mapleson WW: Computer assistance in the control of depth of anaesthesia. Br J Anaesth 56: 1417–1432, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Frumin MJ: Clinical use of a physiological respirator producing N2O amnesia-analgesia. Anesthesiology Mar–Apr: 290–299, 1957.

  9. Fukui Y, Smith NT, and Fleming RA: Digital and sampled-data control of arterial blood pressure during halothane anesthesia. Anes & Analg 61: 1010–1015, 1982.

    CAS  Google Scholar 

  10. Gawthrop PJ: On the stability and convergence of a self-tuning controller. Int J Control 31: 973–998, 1980.

    Article  Google Scholar 

  11. Giard MH, Bertrand FO, Robert D, and Pernier J: An algorithm for automatic control of O2 and CO2 in artificial ventilation. IEEE Trans Biomed Eng 32: 658–667, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Hammond JJ, Kirkendall WM, and Calfee RV: Hypertensive crisis managed by computer controlled infusion of sodium nitroprusside: a model for the closed loop administration of short acting vasoactive agents. Computers and Biomedical Research 12: 97–108, 1979.

    Article  PubMed  CAS  Google Scholar 

  13. Harris CJ, and Billings SA: Self-Tuning and Adaptive Control: Theory and Applications: London. Peregrinus, 1981.

    Google Scholar 

  14. Hayes JK, Westenskow DR, East TD, and Jordan WS: Computer-controlled anesthesia delivery system. Med Instr 18: 224–231, 1984.

    CAS  Google Scholar 

  15. He WG, Kaufman H, and Roy R: Multiple model adaptive control procedure for blood pressure control. IEEE Trans Biomed Eng 33: 10–19, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Hind EC, and MInst MC: Controller selection and tuning. Trans Inst MC 2: 46–56, 1980.

    Article  Google Scholar 

  17. Hind EC, and MInst MC: Three term controller selection, tuning, and interaction factors. Trans MC 2: 101–107, 1980.

    Google Scholar 

  18. Hofer E, and Lunderstadt R: Numerische Methoden der optimierung. Muenchen: R. Oldenburg, 1975.

    Google Scholar 

  19. Hoffmann M, and Hofmann H: Einfuerung in die Optimierung. Weinheim: Verlag Chemie, 1973.

    Google Scholar 

  20. Iserman R: Discretizing the differential equations of continuous PID-controllers. In: Iserman R. Digital Control Systems. Heidelberg: Springer-Verlag, 1981: 74–116.

    Google Scholar 

  21. Isermann R: Parameter adaptive control algorithms — A tutorial. Automatic Control 18: 513–528, 1982.

    Google Scholar 

  22. Lopez AM, Murrill PW, and Smith CL: Tuning PI- and PID-digital controllers. Instrum. and Control Systems 42: 89–95, 1969.

    Google Scholar 

  23. McInnis BC, and Deng LZ: Automatic control of blood pressures with multiple drug inputs. Ann Biomed Eng 13: 217–225, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Meline LJ, Westenskow DR, Somerville A, Wernick RT, and Pace NL: Evaluation of two adaptive sodium nitroprusside control algorithms. J Clin Mon, 1986 (In Press).

  25. Potter DR, Moyle JTB, Lester RJ, and Ware RJ: Closed loop control of vasoactive drug infusion. Anaesthesia 39: 670–677, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Rametti LB, Bradlow HS, and Uys PC: Online parameter estimation and control of d-tubocurarine-induced muscle relaxation. Med & Biol Eng & Comput 23: 556–564, 1985.

    Article  CAS  Google Scholar 

  27. Ross JAS, Wloch RT, White DC, and Hawes DW: Servocontrolled closed-circuit anaesthesia: A method for the automatic control of anaesthesia produced by a volatile agent in oxygen. Br J Anaesth 55: 1053–1060, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Sheppard LC: Computer control of the infusion of vasoactive drugs. Ann Biomed Eng 8: 431–444, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Slate JR: Model-based design of a controller for infusing sodium nitroprusside during postsurgical hypotension. Madison: University of Wisconsin, 1980. Dissertation.

    Google Scholar 

  30. Stern KS, Chizeck HJ, Walker BK, Krishnaprasad PS, Dauchot PJ, and Katona PG: The self-tuning controller: Comparison with human performance in the control of arterial pressure. Ann Biomed Eng 13: 341–357, 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Swan GW: Applications of Optimal Control Theory in Biomedicine. New York, Marcel Dekker, Inc, 1981.

    Google Scholar 

  32. Tatnall ML: Model reference adaptive control systems: back-ground and development. Measurement and Control 10: 475–487, 1977.

    Google Scholar 

  33. Tatnall ML, Morris P, and West PG: Controlled anaesthesia: an approach using patient characteristics identified during uptake. Br J Anaesth 53: 1019–1026, 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Tolle H: Optimierungsverfahren. Berlin: Springer, 1971.

    Google Scholar 

  35. Westenskow DR, Zbinden AM, Thomson D, and Kohler B: Control of end-tidal halothane concentration Part A: Anaesthesia breathing system and feedback control of gas delivery. Br J Anaesth. 1986 (In Press).

  36. Wilde DJ: Optimum seeking methods. Englewood Cliffs: Prentice-Hall, 1964.

    Google Scholar 

  37. Ziegler JG, and Nichols NB: Optimum settings for automatic controllers. Trans of the ASME, Nov: 759–768, 1942.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westenskow, D.R. Fundamentals of feedback control applied to microcomputer instrumentation design. J Clin Monit Comput 3, 239–244 (1986). https://doi.org/10.1007/BF01724391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01724391

Keywords

Navigation