Skip to main content
Log in

Evidence for the participation of proteases on protein catabolism during hypercatabolic renal failure

Hinweise für die Beteiligung von Proteasen am Proteinkatabolismus bei hyperkatabolem Nierenversagen

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

In ultrafiltrated plasma (molecular weight <50,000) obtained from four patients with multiple muscular trauma and acute post-traumatic renal failure, it was possible to verify a subcomponential specific digestion of the subunits alpha and gamma of phosphorylase kinase isolated from rabbit skeletal muscle. The activity of free proteolytic enzymes in ultrafiltrated plasma as well as an increase of plasma alpha1-antitrypsin values were correlated with the severity and unfavourable course of the illness. In contrast, the plasma levels of alpha2-macroglobulin were drastically lowered. The mean total protein concentration in the sera of patients with post-traumatic ARF was lowered, whereas the mean ultrafiltrate protein concentration was significantly enhanced. In ultrafiltrated plasma of two patients with hyperuricaemic ARF, three patients with ARF after drug over-dosage, one patient with acute pancreatic necrosis combined with acute renal failure and one patient with chronic pancreatitis, no proteolytic activity could be detected using phosphorylase kinase as substrate. Studies on the trypsin binding capacity of the plasma protease inhibitors revealed a significantly lowered level in patients with post-traumatic acute renal failure as compared to healthy controls, patients with chronic renal insufficiency and patients on regular dialysis treatment. Proteolytic activity was found in ca. 100-fold concentrated diafiltrates (molecular weight >10,000) of patients on regular dialysis treatment. Our data suggest a participation of proteases on protein catabolism in hypercatabolic states. Whilst the blood coagulation system can largely be excluded as a source of proteases, it is possible that proteolytic enzymes may be released from muscle lysosomes and/or macrophages after multiple muscular trauma.

Zusammenfassung

Im ultrafiltrierten Plasma (Molekulargewicht <50 000) von vier Patienten mit Polytrauma und akutem posttraumatischen Nierenversagen gelang der Nachweis einer proteolytischen Verdauung der Untereinheiten alpha und gamma von Phosphorylase-Kinase, isoliert aus Skelettmuskulatur von Kaninchen. Es bestand eine Beziehung zwischen der Aktivität der freien proteolytischen Enzyme im ultrafiltrierten Plasma und dem Anstieg der Plasma-Alpha1-Antitrypsin-Werte mit der Schwere und dem ungünstigen Verlauf der Erkrankung. Die Plasma-Alpha2-Macroglobulin-Spiegel waren bei Patienten mit posttraumatischem akuten Nierenversagen deutlich erniedrigt. Im Serum von Patienten mit posttraumatischem akuten Nierenversagen war die Gesamtproteinkonzentration erniedrigt, im Plasmaultrafiltrat signifikant erhöht. Bei zwei Patienten mit akuter hyperurikämischer Nephropathie und drei Patienten mit medikamentös induziertem akuten Nierenversagen, einem Patienten mit akuter Pankreasnekrose und akutem postoperativen Nierenversagen sowie einem Patienten mit chronischer Pankreatitis und Zustand nach Whipple-Operation konnten dagegen im ultrafiltrierten Plasma keine freien proteolytischen Enzyme mit Phosphorylase-Kinase als Substrat entdeckt werden. Die Titration der Plasmaproteaseninhibitoren mit Trypsin ergab eine signifikant verminderte Bindungskapazität bei Patienten mit posttraumatischem akuten Nierenversagen im Vergleich zu Patienten mit chronischer Niereninsuffizienz oder regelmäßiger Hämodialyse und gesunden Kontrollen. Proteolytische Aktivität fanden wir bei chronisch urämischen Dauerdialysepatienten im 100fach ankonzentrierten Diafiltrat (Molekulargewicht >10 000). Unsere Daten lassen an eine Beteiligung von Proteasen am Eiweißkatabolismus denken. Während das Blutgerinnungssystem als mögliche Quelle von Proteasen weitgehend ausgeschlossen werden konnte, ist es möglich, daß proteolytische Enzyme nach Polytrauma aus Lysosomen und/oder Makrophagen der Skelettmuskulatur freigesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SDS:

sodium dodecyl sulfate

TCA:

trichloroacetic acid (10%)

RDT:

regular dialysis treatment

ARF:

acute renal failure

References

  1. Adham NF, Dyce B, Haverback BJ (1972) Trypsin-binding α2-macroglobulin in patients with acute pancreatitis. Gastroenterology 61:365–372

    Google Scholar 

  2. Bergström A, Ohlsson K (1978) Immunoreactive trypsin in serum and peritoneal fluid in acute pancreatitis. Hoppe Seyler's Z Physiol Chem 359:677–681

    Google Scholar 

  3. Bieth J, Aubry M, Travis J (1974) The intercation of human cationic trypsin and chymotrypsin II with human serum inhibitors. In: Fritz H, Tschesche H, Greene LH, Truscheit E (eds) Bayersymposium V “proteinase inhibitors”. Springer, Berlin Heidelberg New York, pp 53–62

    Google Scholar 

  4. Cohen P (1973) The subunit structure of rabbit-skeletal-muscle phosphorylase kinase and the molecular basis of its activation reactions. Eur J Biochem 34:1–14

    Google Scholar 

  5. Cohen P, Burchell A, Foulkes JG, Cohen PTW, Vanaman TC, Nairn AC (1978) Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett 92:287–293

    Google Scholar 

  6. Dahlmann B, Schroeter C, Herbertz L, Reinauer H (1979) Myofibrillar protein degradation and muscle proteinase in normal and diabetic rats. Biochem Med 21:33–39

    Google Scholar 

  7. Ford J, Phillips ME, Toye FE, Luck VA, De Wardener HED (1969) Nitrogen balance in patients with chronic renal failure on diets containing varying quantities of protein. Br Med J 1:735–740

    Google Scholar 

  8. Giordano C (1963) Use of exogenous and endogenous urea for protein sythesis in normal and uremic subjects. J Lab Clin Med 62:231–246

    Google Scholar 

  9. Giordano C, De Santo NG, Senatore R (1978) Effects of catabolic stress in acute and chronic renal failure. Am J Clin Nutr 31:1561–1571

    Google Scholar 

  10. Graves JD, Hayakawa T, Horowitz RA, Beckmann E, Krebs EG (1973) Studies on the subunit structure of trypsin-activated phosphorylase kinase. Biochemistry 12:580–585

    Google Scholar 

  11. Gustavsson EL, Ohlsson K, Olsson AS (1980) Interaction between human pancreatic elastase and plasma protease inhibitors. Hoppe Seyler's Z Physiol Chem 361:169–176

    Google Scholar 

  12. Hörl WH, Gräbner E, Heidland A (1978) Increased proteolytic enzyme activity in blood serum of patients with acute and chronic uremia. 15th Congress of the European Dialysis and Transplant Association, Istanbul. Abstracta p 332

  13. Hörl WH, Sperling J, Heidland A (1978) Enhanced glycogen turnover in skeletal muscle of uremic rats — cause of uncontrolled actomyosin ATPase? Am J Clin Nutr 31:1861–1864

    Google Scholar 

  14. Hörl WH, Jennissen HP, Heilmeyer Jr LMG (1978) Evidence for the participation of a Ca2+-dependent protein kinase and a protein phosphatase in the regulation of the Ca2+-transport ATPase of the sarcoplasmic reticulum. 1. Effect of inhibitors of the Ca2+-dependent protein kinase and protein phosphatase. Biochemistry 17:759–766

    Google Scholar 

  15. Hörl WH, Heilmeyer Jr LMG (1978) Evidence for the participation of a Ca2+-dependent protein kinase and protein phosphatase in the regulation of the Ca2+-transport ATPase of the sarcoplasmic reticulum. 2. Effect of phosphorylase kinase and phosphorylase phosphatase. Biochemistry 17:766–772

    Google Scholar 

  16. Hörl WH, Heidland A (1979) Proteolytische Verdauung — Ursache des Proteinkatabolismus bei akutem Nierenversagen. Nieren- Hochdruckkrankh 8:231

    Google Scholar 

  17. Hörl WH, Heidland A (1980) Proteolytische Aktivität im Blutserum von Patienten mit akutem, hyperkatabolem Nierenversagen. In: Heberer G, Schultis K, Günther B (eds) Postaggressionsstoffwechsel II. Schattauer, Stuttgart New York, S 25–29

    Google Scholar 

  18. Hörl WH, Heidland A (1980) Enhanced proteolytic activity — cause of protein catabolism in acute renal failure. Am J Clin Nutr 33:1423–1427

    Google Scholar 

  19. Hörl WH, Stepinski J, Heidland A (1980) Carbohydrate metabolism and uraemia-mechanisms for glycogenolysis and gluconeogenesis. Klin Wochenschr 58:1051–1064

    Google Scholar 

  20. Hörl WH, Gantert C, Auer IO, Heidland A (1981) In vitro inhibition of protein catabolism by alpha2-macroglobulin in plasma from a patient with post-traumatic acute renal failure. Am J Nephrol (in press)

  21. Jennissen HP, Heilmeyer Jr LMG (1975) General aspects of hydrophobic chromatography. Absorption and elution characteristics of some skeletal muscle enzymes. Biochemistry 14:754–759

    Google Scholar 

  22. Laurell CB, Jeppson IO (1975) Protease inhibitors in plasma. In: Putnam FW (ed) The plasma proteins. Academic Press, New York San Francisco London, pp 229–264

    Google Scholar 

  23. Liehr H (1980) Endotoxemia in liver disease. In: Liehr H, Grün M (eds) The reticuloendothelialsystem and the pathogenesis of liver disease. Elsevier/North-Holland, Amsterdam New York Oxford, pp 325–336

    Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  25. Mathis RK, Freier EF, Hunt CE, Krivit W, Sharp HL (1973) Alpha1-antitrypsin in the respiratory-distress syndrome. N Engl J Med 288:59–64

    Google Scholar 

  26. Reinauer H, Dahlmann B (1979) Alkaline proteinases in skeletal muscle. In: Holzer H, Tschesche H (eds) Biological functions of proteinases. Springer, Berlin Heidelberg New York, pp 94–101

    Google Scholar 

  27. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (Ho 781/1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörl, W.H., Stepinski, J., Gantert, C. et al. Evidence for the participation of proteases on protein catabolism during hypercatabolic renal failure. Klin Wochenschr 59, 751–759 (1981). https://doi.org/10.1007/BF01721263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01721263

Key words

Schlüsselwörter

Navigation