Skip to main content
Log in

Visualisierungstechniken in Entscheidungsproblemen bei mehrfacher Zielsetzung

  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Zusammenfassung

In diesem Beitrag werden Ansätze zur graphischen Darstellung von Elementen von Entscheidungsproblemen bei mehrfacher Zielsetzung vorgestellt. Dabei wird nach den Betrachtungsebenen des Problems zwischen der Darstellung von Entscheidungsvariablen, von Attributwerten sowie von ordinalen und kardinalen Präferenzaussagen unterschieden. Neben der Darstellung der einzelnen Ansätze wird auch auf den damit verbundenen Rechenaufwand sowie mögliche Interpretationsprobleme eingegangen.

Abstract

The paper surveys techniques for visualization in the context of multi-criteria decision problems. Techniques for representing decision variables, attribute values of alternatives, ordinal preference relations and cardinal evaluations are covered. Several techniques are presented for each area, taking into account problems of implementation in interactive systems and cognitive effects that might result from the use of different graphical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Angehrn AA (1991) Triple C: Visual interaction for individual and group decision support. In: Unicom Ltd (Hrsg) Computer supported collective work — the multimedia and networking paradigm. Unicom Seminars Ltd, Uxbridge, pp. 101–109

    Google Scholar 

  2. Bamberg G, Coenenberg AG (1992) Betriebswirtschaftliche Entscheidungslehre. 7. Aufl, Vahlen, München

    Google Scholar 

  3. Belton V, Vickers SP (1993) Demystifying DEA — a visual interactive approach based on multiple criteria analysis. J Oper Res Soc 44:883–896

    Google Scholar 

  4. Benayoun R, de Montgolfier J, Tergny J, Laritchev O (1971) Linear programming with multiple objective functions: step method (STEM). Math Program 1:366–375

    Article  Google Scholar 

  5. Benbasat I, Dexter AS, Todd P (1986) An experimental program investigating color enhanced and graphical information presentation: an integration of the findings. Commun ACM 29: 1094–1105

    Article  Google Scholar 

  6. Bruckner LA (1978) On Chernoff faces. In: Wang PCC (Hrsg) Graphical representation of multivariate data. Academic Press, New York, pp 93–121

    Chapter  Google Scholar 

  7. Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth International, Belmont, CA

    Google Scholar 

  8. Chernoff H (1973) The use of faces to represent points in k-dimensional space graphically. J Am Statist Assoc 68:361–368

    Article  Google Scholar 

  9. Chernoff H, Rizvi MH (1975) Effect on classification error of random permutations of features in representing multivariate data by faces. J Am Statist Assoc 70:548–554

    Google Scholar 

  10. Desai A, Walters LC (1991) Graphical presentations of data envelopment analyses: management implications from parallel axes representations. Dec Sci 22:335–353

    Article  Google Scholar 

  11. DeSanctis G (1984) Computer graphics as decision aids: directions for research. Dec Sci 15:463–487

    Article  Google Scholar 

  12. Dickson GW, DeSanctis G, McBride DJ (1986) Understanding the effectiveness of computer graphics for decision support. A cumulative experimental approach. Commun ACM 29:40–47

    Article  Google Scholar 

  13. Dinkelbach W (1992) Operations research. Springer, Berlin

    Book  Google Scholar 

  14. Expert Choice Inc (1990) Expert choice reference manual. Pittsburg

  15. Fandel G (1972) Optimale Entscheidung bei mehrfacher Zielsetzung. Springer, Berlin

    Book  Google Scholar 

  16. Flury B, Riedwyl H (1981) Graphical representation of multivariate data by means of asymmetrical faces. J Am Statist Assoc 76:757–765

    Article  Google Scholar 

  17. Geoffrion AM, Dyer JS, Feinberg A (1972) An interactive approach for multi-criterion optimization, with an application to the operation of an academic department. Manag Sci 19:357–368

    Article  Google Scholar 

  18. Hämäläinen RP, Lauri H (1992) HIPRE 3+ user's guide. System Analysis Laboratory, Helsinki University of Technology

  19. Heiler S, Michels P, Abberger K (1992) Abiturzeugnisse und Studienwahl — ein Beispiel zur Anwendung graphischer Verfahren in der Explorativen Datenanalyse. Diskussionsbeitrag 136/s, Universität Konstanz, Fakultät für Wirtschaftswissenschaften und Statistik

  20. Inselberg A (1985) The plane with parallel coordinates. The Visual Computer 1:69–91

    Article  Google Scholar 

  21. Inselberg A (1986) Multi-dimensional graphics. In: Requicha AAG (Hrsg) EUROGRAPHICS 86. Elsevier, Amsterdam, pp 7–18

    Google Scholar 

  22. Jacob RJK (1978) Facial representation of multivariate data. In: Wang PCC (Hrsg) Graphical representation of multivariate data. Academic Press, New York, pp 143–168

    Chapter  Google Scholar 

  23. Jarvenpaa SL, Dickson GW (1988) Graphics and managerial decision making: research based guidelines. Commun ACM 31: 764–774

    Article  Google Scholar 

  24. Jokinen PA (1994) Visualization of multivariate processes using principal component analysis and nonlinear inverse modelling. Dec Support Syst 11:53–65

    Article  Google Scholar 

  25. Kasanen E, Östermark R, Zeleny M (1991) Gestalt system of holistic graphics: new management support view of MCDM. Comput Oper Res 18:233–239

    Article  Google Scholar 

  26. Kleiner B, Hartigan JA (1981) Representing points in many dimensions by trees and castles. J Am Statist Assoc 76:260–269

    Article  Google Scholar 

  27. Klimberg R (1992) GRADS: A new graphical display system for visualizing multiple criteria solutions. Comp Oper Res 19: 707–711

    Article  Google Scholar 

  28. Korhonen P (1991) Using harmonious houses for visual pairwise comparison of multiple criteria alternatives. Dec Support Syst 7:47–54

    Article  Google Scholar 

  29. Korhonen P (1992) Multiple criteria decision support — the state of research and future directions. Comput Oper Res 19: 549–551

    Article  Google Scholar 

  30. Korhonen P, Laakso J (1986) Solving generalized goal programming problems using a visual interactive approach. Eur J Oper Res 26:355–363

    Article  Google Scholar 

  31. Korhonen P, Moskowitz H, Wallenius J (1992) Multiple criteria decision support — a review. Eur J Oper Res 63:361–375

    Article  Google Scholar 

  32. Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrica 29:115–129

    Article  Google Scholar 

  33. Laux H (1991) Entscheidungstheorie. 2. Aufl. Springer, Berlin

    Google Scholar 

  34. Lehert P, de Wasch A (1983) Representation of best buys for a heterogenous population. In: Hansen P (Hrsg) Essays and surveys on multiple criteria decision making. Springer, Berlin, pp 221–228

    Chapter  Google Scholar 

  35. Lewandowski A, Granat J (1991) Dynamic BIPLOT as an interaction interface for aspiration-based decision support systems. In: Korhonen P, Lewandowski A, Wallenius J (Hrsg) Multiple criteria decision support. Springer, Berlin, pp 229–241

    Google Scholar 

  36. Mareschal B, Brans J-P (1988) Geometrical representations for MCDA. Eur J Oper Res 34:69–77

    Article  Google Scholar 

  37. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Rev 63:81–97

    Article  Google Scholar 

  38. Müller-Merbach H (1991) Entwurf zweidimensionaler Wirtschaftsgraphiken. Technologie und Management 40:24–33

    Google Scholar 

  39. Neumann K (1987) Graphen und Netzwerke. In: Gal T (Hrsg) Grundlagen des Operations Research. Springer, Berlin, pp 1–164

    Chapter  Google Scholar 

  40. Ng W-Y (1991) An interactive descriptive graphical approach to data analysis for trade-off decision in multi-objective programming. Information and Decision Technologies 17:133–149

    Google Scholar 

  41. Reeves GR, Franz LS (1985) A simplified interactive multiple objective linear programming procedure. Comput Oper Res 12: 589–610

    Article  Google Scholar 

  42. Rivett PB (1977) Multidimensional scaling for multiobjective policies. Omega 5:367–379

    Article  Google Scholar 

  43. Rivett PB (1980) Indifference mapping for multiple criteria decisions. Omega 8:81–93

    Article  Google Scholar 

  44. Roy B (1991) The outranking approach and the foundations of ELECTRE methods. Theory Dec 31:49–73

    Article  Google Scholar 

  45. Schilling DA, McGarity A, ReVelle C (1982) Hidden attributes and the display of information in multiobjective analysis. Manag Sci 28:236–242

    Article  Google Scholar 

  46. Schreüder WA, van Dyk E (1989) A multidimensional scaling model for qualitative pair wise comparisons. In: Lockett G, Islei G (Hrsg) Improving decision making in organisations. Springer, Berlin, pp 68–77

    Chapter  Google Scholar 

  47. Sobol MG, Klein G (1989) New graphics as computerized displays for human information processing. IEEE Transact Syst Man, Cybern 19:893–898

    Article  Google Scholar 

  48. Sparrow JA (1989) Graphical displays in information systems: some data properties influencing the effectiveness of alternative forms. Behav Inf Technology 8:43–56

    Article  Google Scholar 

  49. Toussaint KJ, Golden BL (1994) Exchange heuristics to improve base/time plots. Comput Oper Res 21:573–586

    Article  Google Scholar 

  50. Vetschera R (1991) Entscheidungsunterstützende Systeme für Gruppen. Physica, Heidelberg

    Book  Google Scholar 

  51. Vetschera R (1992) A preference-preserving projection technique for MCDM. Eur J Oper Res 61:195–203

    Article  Google Scholar 

  52. Vetschera R (1994) MCView: An integrated graphical system to support multi-attribute decisions. Dec Support Syst 11:363–371

    Article  Google Scholar 

  53. Vetschera R (1994) Visualisation of partial preference relations. Paper presented at EURO XIII, Glasgow

  54. von Winterfeldt D, Edwards W (1986) Decision analysis and behavioral research. Cambridge University Press, Cambridge

    Google Scholar 

  55. Warfield JN (1973) On arranging elements of a hierarchy in graphic form. IEEE Transact Syst Man, Cybern 3:121–132

    Article  Google Scholar 

  56. Weber M (1983) Entscheidungen bei Mehrfachzielen — Verfahren zur Unterstützung von Individual- und Gruppenentscheidungen. Gabler, Wiesbaden

    Google Scholar 

  57. Wolwach A (1992) Graphical representation of binary relations on discrete sets of alternatives. Unveröffentlichtes Manuskript, TU Dresden

    Google Scholar 

  58. Zelasny G (1989) Wie aus Zahlen Bilder werden. Gabler, Wiesbaden

    Book  Google Scholar 

  59. Zionts S (1992) Some thoughts on research in multiple criteria decision making. Comput Oper Res 19:567–570

    Article  Google Scholar 

  60. Zionts S, Wallenius J (1976) An interactive programming method for solving the multiple criteria problem. Manag Sci 22: 652–663

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Überarbeitete Fassung eines Vortrages beim 3. Workshop der DGOR-Arbeitsgruppe ‚'Entscheidungstheorie und -praxis“, Schwangau/Allgäu, 16.–19. 3. 1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetschera, R. Visualisierungstechniken in Entscheidungsproblemen bei mehrfacher Zielsetzung. OR Spektrum 16, 227–241 (1994). https://doi.org/10.1007/BF01720313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01720313

Schlüsselwörter

Key words

Navigation