Skip to main content
Log in

The ellipsoid method and its implications

  • Survey
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Summary

The ellipsoid method is the first known algorithm which in the sense of computational complexity solves linear and convex programming problems efficiently. Based on a simple computational model we introduce some notions from complexity theory and survey the historical antecessors which led to the development of the ellipsoid method. We discribe the fundamental geometric idea as well as a basic version of the algorithm and prove that this basic version gives an efficient algorithm for linear programming problems. We discuss some modifications of the basic method and outline the algorithmic equivalence of optimization and separation which is a consequence of the ellipsoid algorithm. By means of an example we show how this equivalence has led to a unifying framework for efficient algorithms which allowed to discover further efficiently solvable problems.

Zusammenfassung

Das Ellipsoidverfahren ist das erste bekannte Verfahren, das lineare und konvexe Optimierungsprobleme im Sinne der Komplexitätstheorie effizient löst. Mithilfe eines einfachen Rechnermodells führen wir kurz einige zum Verständnis notwendige Begriffe der Komplexitätstheorie ein und geben anschließend einen Überblick über die algorithmischen Vorläufer, die zur Entwicklung des Ellipsoidverfahrens geführt haben. Wir beschreiben die grundlegende geometrische Idee sowie eine Basisversion des Verfahrens, für die wir den Nachweis führen, daß sie lineare Programme im komplexitätstheoretischen Sinne effizient löst. Wir diskutieren einige Modifikationen der Basisversion und skizzieren die algorithmische Äquivalenz von Optimierung und Separation, die auf der Ellipsoidmethode beruht. Anhand eines Beispiels erläutern wir, wie diese Äquivalenz zu einem einheitlichen Modell effizienter Methoden geführt hat, das es erlaubte, weitere, effizient lösbare Probleme zu entdecken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler I, McLean R, Provan S (1980) An application of the Khachian-Shor algorithm to a class of linear complementarity problems. Cowles Foundation Discussion Paper No. 459, Cowles Foundation for Research in Economics, New Haven, USA

    Google Scholar 

  2. Agmon S (1954) The relaxation method for linear inequalities. Can J Math 6:382–392

    Article  Google Scholar 

  3. Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison-Wesley, Reading, Mass.

    Google Scholar 

  4. Agkül M (1980) On Shor-Khachian algorithm. University of Waterloo, Dept. of Combinatorics and Optimization, Waterloo, Ontario, Canada

    Google Scholar 

  5. Avis D, Chvatal V (1976) Notes on Bland's pivoting rule. Math Prog Stud 8:24–34

    Article  Google Scholar 

  6. Bachem A (1982) Concepts of algorithmic computation. In: Korte B (ed) Modern applied mathematics — optimization and operations research. North-Holland, Amsterdam Oxford New York, pp 3–49

    Google Scholar 

  7. Borgwardt K-H (1982) The average number of pivot steps required by the simplex method is polynomial. ZOR 26:157–177

    Google Scholar 

  8. Chung SJ, Murty KG (1981) A polynomially bounded algorithm for positive definite symmetric LCPs. In: Burkard RE, Ellinger T (eds) Methods of operations research, vol 40. Athenäum/Hain/Scriptor/Hanstein, Königstein Ts. pp 63–66

    Google Scholar 

  9. Dantzig GB (1979) Comments on Khachian's algorithm for linear programming. Dept. of Operations Research, Tech. Rep. SOL 79-22, Stanford University, Stanford, USA

    Google Scholar 

  10. Ech-Cherif A, Ecker JG (1982) A class of rank-two ellipsoid algorithms for convex programming. Working Paper, Mathematical Sciences Department of Rensselaer Polytechnic Institute

  11. Edmonds J (1970) Submodular functions, matroids and certain polyhedra. Proc. Int. Conf. on Combinatorics (Calgary), Gordon and Breach, New York, pp 69–87

    Google Scholar 

  12. Eremin II (1960, 1965) The relaxation method of solving systems of inequalities with convex functions on the left sides. Dokl Akad Nauk SSR 160(5):994–996; Sov Math Dokl 6:219–221

    Google Scholar 

  13. Ermolev YuM (1966) Methods of solution of nonlinear extremal problems. Kibernetika 2 (No 4):1–17; Cybernetics 2 (No4):1–16

    Google Scholar 

  14. Gács P, Lovász L (1981) Khachian's algorithm for linear programming. In: König H, Korte B, Ritter K (eds) Mathematical programming at Oberwolfach. Math Programming Study, vol 14. North Holland, Amsterdam Oxford New York, pp 61–68

    Chapter  Google Scholar 

  15. Garey MR, Johnson DS (1979) Computers and intractability — a guide to the theory of NP-completeness. WH Freeman and Company, San Francisco, USA

    Google Scholar 

  16. Godfarb D, Sit WJ (1979) Worst case behavior of the steepest edge simplex method. Discrete Appl Math 1:277–285

    Article  Google Scholar 

  17. Goldfarb D, Todd MJ (1980) Modifications and implementation of the ellipsoid algorithm for linear programming. Tech. Report No. 406, Dept of Comp Sci, Cornell University, Ithaca, NY, USA

    Google Scholar 

  18. Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1:169–197

    Article  Google Scholar 

  19. Jeroslow R (1973) The simplex algorithm with the pivot rule of maximizing criterion improvement. Discrete Math. 4:367–377

    Article  Google Scholar 

  20. Jones PC, Marwil ES (1982) Dimensional reduction variant of the ellipsoid algorithm for linear programming problems. Math Oper Res 7:245–252

    Article  Google Scholar 

  21. Judin DB, Nemirovskii AS (1976, 1977) Evaluation of the information complexity of mathematical programming problems. Ekonom Mat Metody 12:128–142; Matekon 13(2): 3–25

    Google Scholar 

  22. Judin DB, Nemirovskii AS (1976, 1977) Informational complexity and efficient methods for the solution of convex extremal problems. Ekonom Mat Metody 12:357–369; Matekon 13(3):25–45

    Google Scholar 

  23. Judin DB, Nemirovskii AS (1977) Informational complexity of strict convex programming. Ekonom Mat Metody 13:550–559

    Google Scholar 

  24. Karp R, Papadimitriou C (1980) On linear characterization of combinatorial optimization problems. Proc. 21st Ann Symp Foundations of Computer Sciences, IEEE. Computer Society Press, Los Angeles, pp 1–9

    Google Scholar 

  25. Khachian LG (1979, 1980) A polynomial algorithm in linear Programming. Dokl Akad Nauk SSR 244:No. 5 (Abstract); Dokl Akad Nauk SSSR 20:51–68; Sov Math Dokl 20 (No 1):191–194

  26. Klee V, Minty GL (1982) How good is the simplex algorithm? In Shisha O (ed) Inequalities III. Academic Press, New York, pp 159–175

    Google Scholar 

  27. König H, Pallaschke D (1981) On Khachian's algorithm and minimal ellipsoids. Numer Math 36:211–223

    Article  Google Scholar 

  28. Korte B, Schrader R (1981) A note on convergence proofs for Shor-Khachian-methods. In: Auslender A, Oettli W, Stoer J (eds) Optimization and optimal control. Lecture Notes in Control and Information Sciences, vol 30. Springer, Berlin Heidelberg New York, pp 51–57

    Google Scholar 

  29. Kozlov MK, Tarasov SP, Khachian LG (1979) Polynomial solvability of convex quadratic programming. Dokl Akad Nauk SSSR 248 (No 5); Sov Math Dokl 20 (No 5)

  30. Krol J, Mirman B (1980) Some practical modifications of the ellipsoid method for LP problems. Arcon Inc, Boston, Mass, USA

    Google Scholar 

  31. Lawler, EL (1975) Matroid intersection algorithms. Math Programming 9:31–56

    Article  Google Scholar 

  32. Levin A (1965) On an algorithm for the minimization of convex functions. Dokl Akad Nauk SSSR 160 (Sov Math Dokl 6:286–290)

    Google Scholar 

  33. Mityagin BS (1969) Two inequalities for volumes of convex bodies. Mat Zametki 5:99–106;Math Notes 5:61–65

    Google Scholar 

  34. Motzkin T, Schoenberg IZ (1954) The relaxation method for linear inequalities. Can J Math 6:393–404

    Article  Google Scholar 

  35. Padberg M, Rao MR (1980) The russian method for linear inequalities and linear optimization. New York Univ., Graduate School of Business Administration

  36. Padberg M, Rao MR (1980) The russian method for linear inequalites. II: approximate arithmetic. New York Univ., Graduate School of Business Administration

  37. Padberg M, Rao MR (1980) The russian method and integer programming. Graduate School of Business Administration, New York Univ., New York

    Google Scholar 

  38. Pickel PF (1979) Some improvement to Khachiyan's algorithm in linear programming. Polytechnic Institute of New York, Farmingdale, NY, USA

    Google Scholar 

  39. Polyak BT (1967) A general method of solving external problems. Dokl Akad Nauk SSSR 174(1):33–36; Sov Math Dokl 8:593–597

    Google Scholar 

  40. Polyak PT (1978) Subgradient methods: a survey of soviet research. In: Lemarechal C, Mifflin R (eds) Nonsmooth optimization. Pergamon Press, Oxford New York Frankfurt

    Google Scholar 

  41. Shor NZ (1968) The rate of convergence of the generalized gradient descent method. Kibernetika 4 (no 3):98–99; Cybernetics 4 (No 3):79–80

    Google Scholar 

  42. Shor NZ (1970) Utilization of the operation of space dilatation in the minimization of convex functions. Kibernetika 6:6–12; Cybernetics 6:7–15

    Google Scholar 

  43. Shor NZ (1970) Convergence rate of the gradient descent method with dilatation of the space. Kibernetika 8 (No 2): 80–85; Cybernetics 8:102–108

    Google Scholar 

  44. Shor NZ (1975) Convergence of a gradient method with space dilatation in the direction of the difference between two successive gradients. Kibernetika 11 (No 4):48–53; Cybernetics 11:564–570

    Google Scholar 

  45. Shor NZ (1977) Cut-off method with space extension in convex programming problems. Kibernetika 13 (No 1):94–95; Cybernetics 13:94–96

    Google Scholar 

  46. Shor NZ (1977) New development trends in non-differentiable optimization. Kibernetika 13 (No 6):87–91; Cybernetics 13:881–886

    Google Scholar 

  47. Shor NZ, Gamburd PR (1971) Certain questions of convergence of generalized gradient descent. Kibernetika 8 (no 6): 82–84; Cybernetics 8:1033–1036

    Google Scholar 

  48. Shor NZ, Gershovich VI (1979) Family of algorithms for solving convex programming problems. Kibernetika 15 (No 4):62–67; Cybernetics 15:502–507

    Google Scholar 

  49. Shor NZ, Zhurbenko NG (1971) A minimization method using the operation of extension of the space in the direction of the difference of two successive gradients. Kibernetica 7 (No 3):51–59;Cybernetics 7:450–459

    Google Scholar 

  50. Smale S (1982) The problem of the average speed of the simplex method. In: Bachern A, et al. (eds) Mathematical programming, Bonn 1982. The State of the Art. Springer, Berlin Heidelberg New York

    Google Scholar 

  51. Todd MJ (1982) Minimum volume ellipsoid containing part of a given ellipsoid Math Operat Res 7:253–261

    Article  Google Scholar 

  52. Traub JF, Wozniakowski H (1982) Complexity of linear programming. OR Lett 1:59–62

    Google Scholar 

  53. Yamnitsky B, Levin LA (1982) An old linear programming algorithm runs in polynomial time. Paper presented at the Silver Jubilee Conference, Waterloo, Ont., Canada

  54. Zadeh N (1973) A bad network problem for the simplex method and other minimum cost flow algorithms. Math Programming 5:255–266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrader, R. The ellipsoid method and its implications. OR Spektrum 5, 1–13 (1983). https://doi.org/10.1007/BF01720281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01720281

Keywords

Navigation