Skip to main content
Log in

Kapazitätsplanung in Netzwerken

Ein Überblick über neuere Modelle und Verfahren

  • Übersicht
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Zusammenfassung

Die Netzplantechnik zählt zu den für die Praxis wichtigsten Gebieten des Operations Research. Insbesondere die Modelle und Methoden der Struktur- und Zeitplanung werden in vielen Fällen mit Erfolg angewendet. Vorgehensweisen der Kosten- und vor allem der Kapazitätsplanung haben jedoch bislang kaum größere praktische Verbreitung gefunden — trotz oder gerade wegen einer Fülle neuerer theoretischer Konzepte. Der vorliegende Beitrag gibt einen Überblick über deterministische Modelle und Methoden zur Kapazitätsplanung in Netzwerken, welche zur Projektplanung entwickelt wurden. Im Mittelpunkt der Ausführungen stehen Modelle mit Zeit-/Kosten-/Ressourcen-Tradeoffs bei beschränkter Perioden- und Gesamtkapazität und (nicht-) unterbrechbaren Vorgängen.

Summary

Project scheduling is one of the most important disciplines of Operations Research with respect to applications. Especially the simple methods associated with CPM or MPM are successfully applied rather oftenly in practice. However, cost and especially resource-oriented project scheduling methods are in practical use only rarely — despite a lot of new and promising concepts. The paper surveys recent advances in modelling and solving deterministic resource-constrained project scheduling problems suitable for project planning. The main topics are nonpreemptive time/cost/resource-tradeoff models with renewable, nonrenewable and doubly-constrained resources as well as preemptive models which may be treated by linear programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Altrogge G (1979) Netzplantechnik. Gabler, Wiesbaden

    Google Scholar 

  2. Alvarez-Valdes R, Tamarit JM (1989) Heuristic algorithms for resource-constrained project scheduling: a review and an empirical analysis. In: Słowiński R, Węglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam, pp 113–134

    Google Scholar 

  3. Assad AA, Wasil EA (1986) Project management using a microcomputer. Comput Oper Res 13:231–260

    Article  Google Scholar 

  4. Balas E (1971) Project scheduling with resource constraints. In: Beale EML (Hrsg) Applications of mathematical programming techniques. English University Press, London, S 187–200

    Google Scholar 

  5. Bamberg G, Coenenberg AG (1989) Betriebswirtschaftliche Entscheidungslehre, 5. Aufl. Vahlen, München

    Google Scholar 

  6. Bartusch M (1983) Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln. Diss. Aachen

  7. Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource constraints and time windows. Ann Oper Res 16:201–240

    Article  Google Scholar 

  8. Bartusch M, Möhring RH, Radermacher FJ (1989) Design aspects of an advanced model-oriented DSS for scheduling problems in civil engineering. Decis Supp Syst 5:321–344

    Article  Google Scholar 

  9. Blażewicz J, Cellary W, Słowiński R, Węglarz J (1986) Scheduling under resource constraints-deterministic models. Baltzer, Basel. (Annals of Operations Research 7)

    Google Scholar 

  10. Brucker P (1981) Scheduling. Akademische Verlagsges., Wiesbaden

    Google Scholar 

  11. Christofides N, Alvarez-Valdes R, Tamarit JM (1987) Project scheduling with resource constraints: a branch and bound approach. Eur J Oper Res 29:262–273

    Article  Google Scholar 

  12. Cochand M, de Werra D, Słowiński R (1989) Preemptive scheduling with staircase and piecewise linear resource availability. Z Oper Res 33:297–313

    Google Scholar 

  13. Davis EW, Heidorn GE (1971) An algorithm for optimal project scheduling under multiple resource constraints. Manag Sci 17:B-803–B-816

    Article  Google Scholar 

  14. Davis EW, Patterson HJ (1975) A comparison of heuristic and optimum solutions in resource-constrained project scheduling. Manag Sci 21:944–955

    Article  Google Scholar 

  15. Dinkelbach W (1982) Entscheidungsmodell. Walter de Gruyter, Berlin New York

    Google Scholar 

  16. Doersch RH, Patterson JH (1977) Scheduling a project to maximize its present value: a zero-one programming approach. Manag Sci 23:882–889

    Article  Google Scholar 

  17. Domschke W (1989) Logistik: Rundreisen und Touren, 3. Aufl. R Oldenbourg, München Wien

    Google Scholar 

  18. Drexl A (1990) Planung des Ablaufs von Unternehmensprüfungen, CE Poeschel, Stuttgart

    Google Scholar 

  19. Drexl A (1990) Fließbandaustaktung, Maschinenbelegung und Kapazitätsplanung in Netzwerken — Ein integrierender Ansatz, Z Betriebswirt 60:53–70

    Google Scholar 

  20. Drexl A (1991) Scheduling of project networks by job assignment. Manag Sci (in press)

  21. Drexl A, Grünewald J (1991) Nonpreemptive multi-mode resource-constrained project scheduling. IIE Trans (in press)

  22. Dworatschek S, Hayek A (1987) Marktspiegel 87/88 Projekt — Management Software. Verlag TÜV Rheinland, Köln

    Google Scholar 

  23. Elmaghraby SE (1977) Activity networks: project planning and control by network models. John Wiley, New York

    Google Scholar 

  24. Farnum NR, Stanton LW (1987) Some results concerning the estimation of beta distribution parameters in PERT. J Oper Res Soc 38:287–290

    Article  Google Scholar 

  25. Fulkerson DR (1961) A network flow computation for project cost curves. Manag Sci 7:167–178

    Article  Google Scholar 

  26. Gewald K, Kasper K, Schelle H (1972) Netzplantechnik. Band 2: Kapazitätsoptimierung. R Oldenbourg, München Wien

    Google Scholar 

  27. Golenko-Ginzburg D (1988) On the distribution of activity time in PERT. J Oper Res Soc 39:767–771

    Article  Google Scholar 

  28. Grool MC, Visser J, Vriethoff WJ, Wijnen G (Hrsg) (1986) Project management in progress. North Holland, Amsterdam

    Google Scholar 

  29. Ignizio JP (1983) Linear programming in single and multiple objective systems, Prentice Hall, Englewood Cliffs

    Google Scholar 

  30. Isermann H (1979) Strukturierung von Entscheidungsprozessen bei mehrfacher Zielsetzung. OR Spektrum 1:3–26

    Article  Google Scholar 

  31. Kelley JE (1961) Critical-path planning and scheduling: mathematical basis. Oper Res 9:296–320

    Article  Google Scholar 

  32. Kim SO, Schmiederjans MJ (1989) Heuristic framework for the resource constrained multi-project scheduling problem. Comput Oper Res 16:541–556

    Article  Google Scholar 

  33. Knolmayer G, Rückle D (1976) Betriebswirtschaftliche Grundlagen der Projektkostenminimierung in der Netzplantechnik. Z betriebswirt Forsch 28:431–447

    Google Scholar 

  34. Küpper H-U (1982) Ablauforganisation. Gustav Fischer, Stuttgart New York

    Google Scholar 

  35. Küpper W, Lüder K, Streitferdt L (1975) Netzplantechnik. Physica, Würzburg Wien

    Book  Google Scholar 

  36. Kurtulus IS, Davis EW (1982) Multi-project scheduling: categorization of heuristic rules performance. Manag Sci 28:161–172

    Article  Google Scholar 

  37. Kurtulus IS, Narula SC (1985) Multi-project scheduling: analysis of project performance. IIE Trans 17:58–66

    Article  Google Scholar 

  38. Leachman RC, Dincerler A, Kim S (1990) Resource-constrained scheduling of projects with variable-intensity activities. IIE Trans 22:31–40

    Article  Google Scholar 

  39. Lock D (1984) Project management, 3. Aufl. Gower, Aldeshot/Hauts, England

    Google Scholar 

  40. Lofts NR (1974) Multiple allocation of resources in a network — an optimal scheduling algorithm. INFOR 12:25–38

    Google Scholar 

  41. Meredith JR, Mantel SJ (1985) Project management — a managerial approach, John Wiley, New York

    Google Scholar 

  42. Morlock M, Neumann K (1973) Ein Verfahren zur Minimierung der Kosten eines Projektes bei vorgegebener Projektdauer. Angew Informatik 15:135–140

    Google Scholar 

  43. Müller-Merbach H (1967) Optimale Projektbeschleunigung durch parametrische lineare Planungsrechnung. Elektron Datenverarb 9:33–39

    Google Scholar 

  44. Müller-Merbach H (1967) Ein Verfahren zur Planung des optimalen Betriebsmitteleinsatzes bei der Terminierung von Großprojekten. Z wirschaft Fertig 62:83–88 und 135–140

    Google Scholar 

  45. Nägler G, Schönherr S (1989) Resource allcation in a network model — the LEINET system. In: Słowiński R, Węglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam, pp 327–354

    Chapter  Google Scholar 

  46. Neumann K (1989) Netzplantechnik. In: Gal T (Hrsg) Grundlagen des Operations Research, Band 2, 2. Aufl. Springer, Berlin Heidelberg New York, pp 165–260

    Chapter  Google Scholar 

  47. Neumann K, Steinhardt U (1979) GERT networks and the timeoriented evaluation of projects. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  48. Pack L, unter Mitarbeit von G Altrogge (1972) Netzplantechnik. Jacob H (Hrsg): Industriebetriebslehre in programmierter Form, Bd. II: Planung und Planungsrechnung. Gabler, Wiesbaden, S 499–555

    Google Scholar 

  49. Patterson JH (1984) A comparison of exact approaches for solving the multiple constrained resource, project scheduling problem. Manag Sci 30:854–867

    Article  Google Scholar 

  50. Patterson J, Słowiński R, Talbot B, Węglarz J (1990) Computational experience with a backtracking algorithm for a general class of precedence and resource constrained scheduling problems. Eur J Oper Res (in press)

  51. Pritsker AAB, Sigal CE (1983) Management decision making — a network simulation approach. Prentice Hall, Englewood Cliffs

    Google Scholar 

  52. Pritsker AAB, Watters WD, Wolfe PM (1969) Multiproject scheduling with limited resources: a zero-one programming approach. Manag Sci 16:93–108

    Article  Google Scholar 

  53. Radermacher FJ (1985/86) Scheduling of project networks. Ann Oper Res 4:227–252

    Article  Google Scholar 

  54. Russell AH (1970) Cash flows in networks. Manag Sci 16:357–373

    Article  Google Scholar 

  55. Russell RA (1986) A comparison of heuristics for scheduling projects with cash flows and resource restrictions. Manag Sci 32:1291–1300

    Article  Google Scholar 

  56. Schrage L (1970) Solving resource-constrained network problems by implicit enumeration — nonpreemptive case. Oper Res 18:263–278

    Article  Google Scholar 

  57. Schwarze J (1983) Netzplantheorie. NWB Verlag, Herne Berlin

    Google Scholar 

  58. Schwarze J (1986) Netzplantechnik. 5. Aufl. NWB Verlag, Herne Berlin

    Google Scholar 

  59. Słowiński R (1980) Two approaches to problems of resource allocation among project activities — a comparative study. J Oper Res Soc 31:711–723

    Google Scholar 

  60. Słowiński R (1981) Multiobjective network scheduling with efficient use of renewable and nonrenewable resources. Eur J Oper Res 7:265–273

    Article  Google Scholar 

  61. Słowiński R (1989) Multiobjective project scheduling under multi-category resource constraints. In: Słowiński R, Węglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam, pp 151–167

    Google Scholar 

  62. Słowiński R, Węglarz J (1985) An interactive algorithm for multiobjective precendence and resource constrained scheduling problems. In: Vriethoff W et al. (Hrsg) Proc. 8th INTERNET Congress. North Holland, Amsterdam, S 866–873

    Google Scholar 

  63. Słowiński R, Węglarz J (1989) (eds) Advances in project scheduling. Elsevier, Amsterdam

    Google Scholar 

  64. Steuer RE (1986) Multiple criteria optimization: theory, computation, and application. John Wiley, New York

    Google Scholar 

  65. Stinson JP, Davis EW, Khumawala BM (1978) Multiple resource-constrained scheduling using branch and bound. AIIE Trans 10:252–259

    Article  Google Scholar 

  66. Talbot FB (1982) Resource — constrained project scheduling with time-resource tradeoffs: the nonpreemptive case. Manag Sci 28:1197–1210

    Article  Google Scholar 

  67. Talbot FB, Patterson JH (1978) An efficient integer programming algorithm with network cuts for solving resource-constrained scheduling problems. Manag Sci 24:1163–1174

    Article  Google Scholar 

  68. Thesen A (1976) Heuristic scheduling of activities under resource and precedence restrictions. Manag Sci 23:412–422

    Article  Google Scholar 

  69. Viefhues D (1982) Mehrzielorientierte Projektplanung. Peter Lang, Frankfurt/Main-Bern

    Google Scholar 

  70. Węglarz J (1979) Project scheduling with discrete and continuous resources. IEEE Trans Syst, Man, Cyber 9:644–650

    Article  Google Scholar 

  71. Węglarz J (1980) Control in resource allocation systems. Found Control Eng 5:159–180

    Google Scholar 

  72. Węglarz J (1981) Project scheduling with continuously divisible, doubly-constrained resources. Manag Sci 27:1040–1053

    Article  Google Scholar 

  73. Węglarz J (1985) Allocating continuous, doubly constrained resources among parallel production activities to meet deadlines. RAIRO APII 19:497–507

    Google Scholar 

  74. Węglarz J (1989) Project scheduling under continuous processing speed vs. resource amount activity models. In: Słowiński R, Węglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam, pp 273–295

    Chapter  Google Scholar 

  75. Węglarz J, Blazewicz J, Cellary W, Słowiński R (1977) Algorithm 520 — An automatic revised simplex method for constrained resource network scheduling [H]. ACM Trans Math Software 3:295–300

    Article  Google Scholar 

  76. de Werra D (1989) Graph-theoretical models for preemptive scheduling. In: Słowirński R, Węglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam, pp 171–185

    Chapter  Google Scholar 

  77. Whitehouse GE (1973) Systems analysis and design using network techniques, Prentice Hall, Englewood Cliffs

    Google Scholar 

  78. Wille H, Gewald K, Weber HD (1972) Netzplantechnik, Band 1: Zeitplanung, 3. Aufl. R Oldenbourg, München Wien

    Google Scholar 

  79. Zäpfel G (1982) Produktionswirtschaft — Operatives Produktions-Management. Walter de Gruyter, Berlin New York

    Google Scholar 

  80. Zelewski S (1988) Ansätze der künstlichen Intelligenz-Forschung zur Unterstützung der Netzplantechnik. Z betriebswirt Forsch 40:1112–1129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domschke, W., Drexl, A. Kapazitätsplanung in Netzwerken. OR Spektrum 13, 63–76 (1991). https://doi.org/10.1007/BF01719929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01719929

Schlüsselwörter

Keywords

Navigation