Skip to main content
Log in

Modeling the satellite placement problem as a network flow problem with one side constraint

  • Theoretical Papers
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Summary

The placement of telecommunication satellites in the geostationary orbit (GSO) gives rise to NP-hard optimization problems usually approached with iterative neighborhood (possibly tabu) search schemes. A typical iteration thereof consists in fixing an order for the satellites and determining their actual locations by linear programming. In such procedures it is crucial to efficiently solve the very large number of arising special linear programs. We describe those linear programs, characterize their duals as special network flow problems with one side constraint and then present an efficient network simplex method to solve them. Since these problems can be highly degenerate, we generalize Cunningham's concept of strongly feasible bases to our case and present a procedure based thereupon which prevents cycling. Computational experience with our algorithms substantiates our efficiency claims.

Zusammenfassung

Die Placierung von Telekommunikationssatelliten im geostationären Orbit (GSO) führt auf NP-schwierige Optimierungsprobleme, die z. B. mit Nachbarschafts-Suchverfahren, insbes. Tabuverfahren angegangen werden können. Ein typischer Schritt darin besteht in der Festlegung einer Reihenfolge der Satelliten und anschließender Placierung mit linearer Programmierung. Bei solchen Verfahren ist die effiziente Lösung der großen Anzahl auftretender spezieller linearer Programme ausschlaggebend. Wir beschreiben diese linearen Programme, charakterisieren deren Dualprobleme als Netzwerkflußaufgaben mit einer Nebenbedingung und geben dafür ein effizientes Simplex-Verfahren an. Da diese Aufgaben meist stark degeneriert sind, erweitern wir Cunninghams Begriff einer stark zulässigen Basis auf unseren Fall und geben ein darauf basierendes, Zyklen vermeidendes Lösungsverfahren an. Numerische Experimente belegen unsere Behauptungen zur Effizienz der Verfahren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belling-Seib K, Mevert P, Müller C (1988) Network flow problems with one side constraint: A comparison of three solution methods. Comput Oper Res 15 (No 4):381–394

    Article  Google Scholar 

  • Bland R (1977) New finite pivoting rules for the simplex method. Math Oper Res 2:103–107

    Article  Google Scholar 

  • Charnes A (1952) Optimality and degeneracy in linear programming. Econometrica 20:160–170

    Article  Google Scholar 

  • Cunningham W (1976) A network simplex method. Math Program 11:105–116

    Article  Google Scholar 

  • Cunningham W (1979) Theoretical properties of the network simplex method. Math Oper Res 4 (No 2):196–208

    Article  Google Scholar 

  • Dantzig G, Orden A, Wolfe P (1955) The generalized simplex method for minimizing a linear form under linear inequality restraints. Pac J Math 5:183–195

    Article  Google Scholar 

  • Glover F, Karney D, Klingman D, Russell R (1978) Solving singly constrained transshipment problems. Transport Sci 12:277–297

    Article  Google Scholar 

  • Gonsalvez D, Reilly C, Mount-Campbell C (1986) On orbital allotments for geostationary satellites. Tech Report 718688-2, ElectroScience Laboratory, The Ohio State University, Columbus

    Google Scholar 

  • Hultz J, Klingman D (1978) Solving singularly constrained generalized network problems. Appl Math Optim 4:103–119

    Article  Google Scholar 

  • Ito Y, Mizuno T, Muratani T (1979) Efficient utilization of geostationary satellite orbit through optimization. IEEE Trans Commun 27 (No 10): 1551–1558

    Article  Google Scholar 

  • Johnson E (1966) Networks and basic solutions. Oper Res 14:619–623

    Article  Google Scholar 

  • Kennington J, Helgason R (1980) Algorithms for network programming. John Wiley and Sons, New York

    Google Scholar 

  • Klingman D, Napier A, Stutz J (1974) NETGEN: A program for generating large scale capacitated assignment, transportation and minimum cost flow network problems. Manage Sci 20:814–821

    Article  Google Scholar 

  • Reilly C, Walton E, Mata F, Mount-Campbell C, Olen C, Widjaja S (1989) A heuristic approach to worst-case carrier-to-interference ratio maximization in satellite system synthesis. Working Paper Series Number 1989-006, Department of Industrial and Systems Engineering, The Ohio State University, Columbus

    Google Scholar 

  • Spaelti S, Liebling T, Giroux M (1988) Placement of telecommunication satellites in the geostationary orbit. Operations Research Proceedings of the DGOR Conference 1988. Springer, Berlin Heidelberg New York, pp 189–194

    Google Scholar 

  • Spaelti S (1990) The placement of telecommunication satellites in the geostationary orbit. Doctoral Thesis, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spälti, S.B., Liebling, T.M. Modeling the satellite placement problem as a network flow problem with one side constraint. OR Spektrum 13, 1–14 (1991). https://doi.org/10.1007/BF01719766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01719766

Key words

Schlüsselwörter

Navigation