Skip to main content
Log in

Scatter search and star-paths: beyond the genetic metaphor

  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Abstract

Scatter search and genetic algorithms have originated from somewhat different traditions and perspectives, yet exhibit features that are strongly complementary. Links between the approaches have increased in recent years as variants of genetic algorithms have been introduced that embody themes in closer harmony with those of scatter search. Some researchers are now beginning to take advantage of these connections by identifying additional ways to incorporate elements of scatter search into genetic algorithm approaches. There remain aspects of the scatter approach that have not been exploited in conjunction with genetic algorithms, yet that provide ways to achieve goals that are basic to the genetic algorithm design. Part of the gap in implementing hybrids of these procedures may derive from relying too literally on the genetic metaphor, which in its narrower interpretation does not readily accommodate the strategic elements underlying scatter search. The theme of this paper is to show there are benefits to be gained by going beyond a perspective constrained too tightly by the connotations of the term “genetic”. We show that the scatter search framework directly leads to processes for combining solutions that exhibit special properties for exploiting combinatorial optimization problems. In the setting of zero-one integer programming, we identify a mapping that gives new ways to create combined solutions, producing constructions calledstar-paths for exploring the zero-one solution space. Star-path trajectories have the special property of lying within regions assured to include optimal solutions. They also can be exploited in association with both cutting plane and extreme point solution approaches. These outcomes motivate a deeper look into current conceptions of appropriate ways to combine solutions, and disclose there are more powerful methods to derive information from these combinations than those traditionally applied.

Zusammenfassung

Scatter Search (gestreute Suche) und genetische Algorithmen weisen eine Anzahl einander komplementärer Eigenschaften auf. Trotz verschiedenen Ursprungs haben sich in den letzten Jahren, insbesondere auch aufgrund zahlreicher Modifikationen genetischer Verfahren, zunehmend mehr Gemeinsamkeiten herausgeschält, die in erster Linie auch durch die Übertragung von Scatter Search Features in genetische Algorithmen entstanden. Einige grundlegende Aspekte von Scatter Search sind bisher jedoch in genetischen Algorithmen — im engeren Sinne — nicht berücksichtigt. Es zeigt sich, daß mittels Scatter Search Kombinationen von Lösungen generiert werden können, deren Eigenschaften entscheidend die kombinatorische Struktur der zugrundeliegenden Optimierungsprobleme widerspiegeln. Im Falle binärer Optimierungsprobleme werden durch Projektionen Lösungen zu sog. Sternpfaden (star-paths) kombiniert, von denen aus jeweils optimale Lösungen erzeugt werden können. Mögliche Ergänzungen durch Schnittebenen zur Exploration des Lösungsraumes legen nahe, der Kombination von Lösungen (vgl. etwa die Rekombination bei genetischen Algorithmen) zur Erzeugung problemspezifischen Wissens mehr Aufmerksamkeit zu schenken als bisher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts EHL, Eiben AE, van Hee KM (1989) A General Theory of Genetic Algorithms. Computing Science Notes, 89/8, Eindhoven University of Technology

  • Aboudi R, Jörnsten K (1992) Tabu Search for General Zero-One Integer Programs Using the Pivot and Complement Heuristic. ORSA J Comput

  • Ackley D (1987) A Connectionist Model for Genetic Hillclimbing. Kluwer, London

    Google Scholar 

  • Back T, Hoffmeister F, Schwefel H (1991) A Survey of Evolution Strategies. Pro-ceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, California, 2–9

    Google Scholar 

  • Balas E, Martin C (1980) Pivot and Complement — a Heuristic for 0–1 Programming. Manag Sci 26(1):86–96

    Google Scholar 

  • Battiti R, Tecchiolli G (1992) Parallel Biased Search For Combinatorial Optimization: Genetic Algorithms and Tabu Search. Microprocessors and Microsystems 16:351–367

    Google Scholar 

  • Cabot AV, Hurter AP (1968) An Approach to Zero-One Integer Programming. Oper Res 16:1212–1216

    Google Scholar 

  • Costa D (1992) An Evolutionary Tabu Search Algorithm and the NHL Scheduling Program. ORWP 92-11, Ecole Polytechnique Fédérale de Lausanne, Switzerland

    Google Scholar 

  • Dantzig G (1963) Linear Programming and Extensions. Princeton University Press, Princeton

    Google Scholar 

  • Davis L (ed) (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York

    Google Scholar 

  • Dorndorf U, Pesch E (1995) Evolution Based Learning in a Job Shop Scheduling Environment. Comput Oper Res 22:25–40

    Google Scholar 

  • Eschelman LJ, Schaffer JD (1992) Real-Coded Genetic Algorithms and Interval-Schemata. Technical Report, Phillips Laboratories

  • Glover F (1964) A Bound Escalation Method for the Solution of Integer Linear Programs. Cahiers de Recherche Opérationelle 6(3):131–168

    Google Scholar 

  • Glover F (1968) A Note on Linear Programming and Integer Infeasibility. Oper Res 16:1212–1216

    Google Scholar 

  • Glover F (1977) Heuristic for Integer Programming Using Surrogate Constraints. Dec Sci 8:156–166

    Google Scholar 

  • Glover F (1989) Tabu Search — Part I. ORSA J Comput 1(3):190–206

    Google Scholar 

  • Glover F (1991) Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic Algorithms) (to appear) Discr Appl Math

  • Glover F (1993) Directional Rounding and Vertex-Cone Projects for Zero-One Programming. University of Colorado, Boulder

    Google Scholar 

  • Glover F (1994) Tabu Search: Improved Solution Alternatives. Mathematical Programming: State of the Art 1994, J.R. Birge, K.G. Murty (eds) The University of Michigan Press

  • Glover F, Lokketangen A (1994) Solving Zero-One Mixed Integer Programming Problems Using Tabu Search, Research Report, University of Colorado, Boulder

    Google Scholar 

  • Glover F, Kelly J, Laguna M (1992) Genetic Algorithms and Tabu Search: Hybrids for Optimization. Comput Oper Res (to appear)

  • Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Gomory R (1960) An Algorithm for the Mixed Integer Problem, RM 2597, The Rand Corporation

  • Gomory R (1963) An Algorithm for Integer Solutions to Linear Programs, in Recent Advances in Mathematical Programming, Graves and Wolfe (eds) McGraw-Hill, New York

    Google Scholar 

  • Hu TC (1969) Integer Programming and Network Flows. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Lokketangen A, Jörnsten K, Storoy S (1993) Tabu Search Within a Pivot and Complement Framework, paper presented at the IFORS 93 Conference, Lisbon, Portugal

  • Michalewicz Z (1993) Evolutionary Computation Techniques for Nonlinear Programming Problems, paper presented at the IFORS 93 Conference, Lisbon, Portugal

  • Michalewicz Z, Vignaux GA, Hobbs M (1991) A Non-Standard Genetic Algorithm for the Nonlinear Transportation Problem. ORSA J Comput 3(4)307–316

    Google Scholar 

  • Moscato P (1993) An Introduction to Population Approaches for Optimization and Hierarchical Objective Functions: A Discussion on the Role of Tabu Search. Ann Oper Res 41:85–122

    Google Scholar 

  • Mühlenbein H, Gorges-Schleuter M, Krämer O (1988) Evolution Algorithms in Combinatorial Optimization. Parallel Comput 7:65–88

    Google Scholar 

  • Mühlenbein H (1992) Parallel Genetic Algorithms in Combinatorial Optimization, to appear in Computer Science and Operations Research, Osman Balci, ed., Pergamon Press, New York

    Google Scholar 

  • Murty K (1976) Linear and Combinatorial Programming. John Wiley, New York

    Google Scholar 

  • Nemhauser G, Wolsey L (1983) Linear and Combinatorial Optimization. John Wiley, New York

    Google Scholar 

  • Parker G, Rardin R (1988) Discrete Optimization. Academic Press, New York

    Google Scholar 

  • Reeves C (1993a) Modern Heuristic Techniques for Combinatorial Problems. Blackwell, Oxford

    Google Scholar 

  • Reeves C (1993b) Diversity and Diversity in Genetic Algorithms: Some Connections with Tabu Search. Coventry University, United Kingdom

    Google Scholar 

  • Salkin H (1975) Integer Programming. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Ulder NLJ, Pesch E, van Laarhoven PJM, Bandelt HJ, Aarts EHL (1991) Genetic Local Search Algorithm for the Traveling Salesman Problem. Parallel Problem Solving from Nature, R. Männer, H.P. Schwefel (eds) (Lect. in Computer Science, vol 496) Springer, Berlin Heidelberg New York, pp 109–116

    Google Scholar 

  • de Werra D, Hertz A (1989) Tabu Search Technique: A Tutorial and an Application to Neural Networks. OR Spektrum 11:131–141

    Google Scholar 

  • Whitley D (1993) Foundations of Genetic Algorithms 2, Morgan Kaufmann

  • Woodruff DL, Spearman ML (1992) Sequencing and Batching for Two Classes of Jobs with Deadlines and Setup Times. Product Oper Manag 1(1):87–102

    Google Scholar 

  • Woodruff DL, Zemel E (1993) Hashing Vectors for Tabu Search. Ann Oper Res 41:123–137

    Google Scholar 

  • Zionts S (1974) Linear and Integer Programming. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is supported in part by the Joint Air Force Office of Scientific Research and Office of Naval Research Contract No. F49620-90-C-0033 at the University of Colorado

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glover, F. Scatter search and star-paths: beyond the genetic metaphor. OR Spektrum 17, 125–137 (1995). https://doi.org/10.1007/BF01719256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01719256

Key words

Schlüsselwörter

Navigation