Skip to main content
Log in

Histamine and some of its metabolites in human body fluids

Histamin und einige seiner Metaboliten in menschlichen Körperflüssigkeiten

  • 1. Adverse Reactions And Histamine Release In Anaesthesia And Surgery
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The concentrations of histamine, t-methylhistamine and t-methylimidazoleacetic acid were measured in human cerebrospinal fluid, plasma and urine, Especially noteworthy are the levels of histamine in cerebrospinal fluid which are far higher than those of t-methylhistamine and of t-methylimidazoleacetic acid, and high enough to stimulate histamine receptors in the central nervous system. It is suggested that mast cells, which surround the subarachnoid space, may contribute histamine to the cerebrospinal fluid and may offer a target for drugs and for immunologic actions. The t-methylhistamine and t-methylimidazoleacetic acid levels in cerebrospinal fluid may reflect central histaminergic activity, although a source of these metabolites in addition to histamine needs to be considered.

Zusammenfassung

Die Konzentrationen von Histamin, t-Methylhistamin, t-Methylimidazolessigsäure wurden in menschlichen zerebrospinalen Flüssigkeiten, im Plasma und im Urin gemessen. Beachtenswert sind insbesondere die Histaminspiegel in zerebrospinaler Flüssigkeit, die sehr viel höher als die Spiegel von t-Methylhistamin und t-Methylimidazolessigsäure sind. Sie sind hoch genug, um Histaminrezeptoren im zentralen Nervensystem zu stimulieren. Es wird nahegelegt, daß Mastzellen, die den subarachnoidalen Raum umgeben, das Histamin in die zerebrospinale Flüssigkeit abgeben und deshalb ein Ziel für Arzneimittel und immunologische Vorgänge darstellen. Die t-Methylhistamin-und t-Methylimidazolessigsäurespiegel in der Zerebrospinalflüssigkeit könnten die zentrale Histaminaktivität widerspiegeln, obgleich ein Ursprung dieser Metaboliten zusätzlich zum Histamin berücksichtigt werden sollte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou YZ, Adam HM, Stephen, WRG (1973) Concentration of histamine in different parts of the brain and hypophysis of rabbit: effect of treatment with histidine, certain other amino acids and histamine. Br J Pharmacol 48:577–589

    Google Scholar 

  • Akcasu A, Unna KR (1970) The role of mast cell disruption in the acute manifestations of the intravenous injection of morphine in dogs. Eur J Pharmacol 13:103–107

    Google Scholar 

  • Autio V, Ermala, P (1949) Determination of histamine in cerebrospinal fluid in some neuropsychiatric cases. Ann Med Exp Fenn 27:87–91

    Google Scholar 

  • Axelrod J, MacLean PD, Albers RW, Weissbach H (1961) Regional distribution of methyl transferase enzymes in the nervous system and glandular tissues. In: Kety SS, Elkes J (Eds) Regional neurochemistry. Pergamon Press, New York, pp 307–311

    Google Scholar 

  • Black JW, Gannelin CR (1974) Naming of substituted histamines. Experientia 30:111–113

    Google Scholar 

  • Blanco I, Blanco M, Grau M, Palacios JM, Picatoste F, Scherk G (1973) Distribution of histamine in 7 brain regions in different species and strains of mammals. Experientia 29:791–793

    Google Scholar 

  • Brown DD, Tomchick R, Axelrod J (1959) The distribution and properties of a histamine-methylating enzyme. J Biol Chem 234:2948–2950

    Google Scholar 

  • Brown MJ, Ind PW, Barnes PJ, Jenner DA, Dollery CT (1980) A sensitive and specific radiometric method for the measurement of plasma histamine in normal individuals. Anal Biochem 109:142–146

    Google Scholar 

  • Bruce C, Taylor WH, Westwood A (1979) An improved radioenzymatic assay for histamine in human plasma, whole blood, urine, and gastric juice. Ann Clin Biochem 16:259–264

    Google Scholar 

  • Cammermeyer J (1973) Mast cells and postnatal topographic anomalies in mammalian subfornical body and supraoptic crest. Z Anat Entwickl Gesch 140:245–269

    Google Scholar 

  • Chou WS, Ho AKS, Loh HH (1981) Neurohormones on brain adenyl cyclase activity in vivo. Nature New Biol 233:280–281

    Google Scholar 

  • Doshi PS, Edwards DJ (1979) Use of 2,6-dinitro-4-trifluoromethylbenzenesulfonic acid as a novel derivatizing reagent for the analysis of catecholamines, histamines and related amines by gas chromatography with electron-capture detection. J Chromatogr 176:359–366

    Google Scholar 

  • Dropp JJ (1972) Mast cells in the central nervous system of several rodents. Anat Rec 174:227–238

    Google Scholar 

  • Ebert MH, Kartzinel R, Cowdry RW, Goodwin FK (1980) Cerebrospinal fluid amine metabolites and the probenecid test. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol 1. Plenum Press, New York, pp 97–112

    Google Scholar 

  • Edvinsson L, Owman C, Sjöberg N-O (1976) Autonomic nerves, mast cells, and amine receptors in human brain vessels, a histochemical and pharmacological study. Brain Res 115:377–393

    Google Scholar 

  • Edvinsson L, Cervos-Navarro J, Larsson L-I, Owman C, Rönnberg A-L (1977) Regional distribution of mast cells containing histamine, dopamine, or 5-hydroxytryptamine in the mammalian brain. Neurology 27:878–883

    Google Scholar 

  • Evans E, Nicholls PJ (1973) A method for the gas chromatographic determination of urinary 1,4-methylimidazoleacetic acid. J Chromatogr 82:394–397

    Google Scholar 

  • Falck B (1962) Observations of the possibilites of the cellular localization of monoamines by a fluorescence method. Acta Physiol [Suppl 197] Scand 56:1–25

    Google Scholar 

  • Fram DH, Green JP (1965) The presence and measurement of methylhistamine in urine. J Biol Chem 240:2036–2042

    Google Scholar 

  • Fram DH, Green JP (1968a) Methylhistamine in guinea pig brain. J Neurochem 15:597–602

    Google Scholar 

  • Fram DH, Green JP (1968b) Methylhistamine excretion during treatment with a monoamine oxidase inhibitor. Clin Pharmacol Ther 9:355–357

    Google Scholar 

  • Furano AV, Green JP (1964) The uptake of biogenic amines by mast cells of the rat. J Physiol (Lond) 170:263–271

    Google Scholar 

  • Gershon S, Shaw FH (1958) Morphine and histamine release. J Pharm Pharmacol 10:22–29

    Google Scholar 

  • Gleich GJ, Hull WM (1980) Measurement of histamine: a quality control study. J Allergy Clin Immunol 66:295–298

    Google Scholar 

  • Granerus G (1968) Urinary excretion of histamine, methylhistamine and methylimidazoleacetic acids in man under standardized dietary conditions. Scand J Clin Lab Invest [Suppl 22] 104:59–68

    Google Scholar 

  • Green JP (1968) A new neoplastic mast cell grown in culture. Eur J Pharmacol 3:68–73

    Google Scholar 

  • Green JP (1970) Histamine. In: Handbook of neurochemistry, vol 4. Plenum Press, New York, pp 221–250

    Google Scholar 

  • Green JP, Hough LB (1980) Histamine. In: Schulster D, Levitzki A (eds) Cellular receptors. Wiley, London, New York, pp 287–298

    Google Scholar 

  • Green JP, Fram DH, Kase N (1964) Methylhistamine and histamine in the urine of women during the elaboration of oestrogen. Nature (Lond) 204:1165–1168

    Google Scholar 

  • Green JP, Johnson CL, Weinstein H, Maayani S (1977) Antagonism of histamine-activated adenylate cyclase in brain byD-lysergic acid diethylamide. Proc Natl Acad Sci USA 74:5697–5701

    Google Scholar 

  • Green JP, Johnson CL, Weinstein H (1978) Histamine as a neurotransmitter. In: Lipton, MA, DiMascio A, Killam KF (eds) Psychopharmacology: A generation of progress. Raven Press, New York, pp 319–332

    Google Scholar 

  • Haverberg LN, Omstedt PT, Munro HN, Young VR (1975) Nτ-methylhistidine content of mixed proteins in various rat tissues. Biochim Biophys Acta 405:67–71

    Google Scholar 

  • Holzer P, Saria A, Skofitsch G, Lembeck F (1981) Increase of tissue concentrations of histamine and 5-hydroxytryptamine following capsaicin treatment of newborn rats. Life Sci 29:1099–1105

    Google Scholar 

  • Hough LB, Domino EF (1979a) Tele-methylhistamine distribution in rat brain. J Neurochem 32:1865–1866

    Google Scholar 

  • Hough LB, Domino EF (1979b) Telemethylhistamine oxidation by type B monoamine oxidase. J Pharmacol Exp Ther 208:422–428

    Google Scholar 

  • Hough LB, Green JP (1980) Possible function for brain histamine. Psychopharmacol Bull 16:42–44

    Google Scholar 

  • Hough LB, Stetson PL, Domino EF (1979) Gas chromatography-mass spectrometric characteristics and assay of tele-methylhistamine. Anal Biochem 96:56–63

    Google Scholar 

  • Hough LB, Khandelwal JK, Morrishow AM, Green JP (1981) An improved GC-MS method to measure tele-methylhistamine. J Pharmacol Methods 5:143–148

    Google Scholar 

  • Hough LB, Khandelwal JK, Green JP (1982) Effects of pargyline on tele-methylhistamine and histamine in rat brain. Biochem Pharmacol (in press)

  • Jarrott B, Hjelle JT, Spector S (1979) Association of histamine with cerebral microvessels in regions of bovine brain. Brain Res 168:323–330

    Google Scholar 

  • Jonassen F, Granerus G, Wetterqvist H (1979) Histamine metabolism during the menstrual cycle. Acta Obstet Gynecol Scand 55:297–304

    Google Scholar 

  • Kelvin AS (1970) A further method of eliminating interfering compounds in the gas chromatographic determination of urinary methylimidazoleacetic acids. Br J Pharmacol 38:466P-468P

    Google Scholar 

  • Khandelwal JK, Hough LB, Green JP (1982a) Presence and measurement of tele-methylimidazoleacetic acid and prosmethylimidazoleacetic acid in rat brain and in human CSF, plasma und urine. Fed Proc (in press)

  • Khandelwal JK, Hough LB, Morrishow AM, Green JP (1982b) Measurement of tele-methylhistamine in human cerebrospinal fluid, urine, and plasma. Agents Actions (in press)

  • Khandelwal JK, Hough LB, Pazhenchevsky B, Morrishow AM, Green JP (1982c) Presence and measurement of methylimidazoleacetic acids in brain and body fluids. J Biol Chem (in press)

  • Kiernan JA (1976) A comparative survey of the mast cells of the mammalian brain. J Anat 121:303–311

    Google Scholar 

  • Lipinski J. Schaumburg HH, Baldessarini RJ (1973) Regional distribution of histamine in human brain. Brain Res 52:403–408

    Google Scholar 

  • Long CL, Haverberg LN, Young VR, Kinney JM, Munro HN, Geiger JW (1975) Metabolism of 3-methylhistidine in man. Metabolism 24:929–935

    Google Scholar 

  • Lorenz W, Doenicke A, Schöning B, Neugebauer E (1981) The role of histamine in adverse reactions to intravenous agents. In: Thornton JA (ed) Adverse reactions of anaesthetic drugs. Elsevier/North-Holland, Amsterdam, New York, pp 169–238

    Google Scholar 

  • Mita H, Yasueda H, Shida T (1980) Simultaneous determination of histamine and nτ-Methylhistamine in human plasma and urine by gas chromatography-mass spectrometry. J Chromatogr 221:1–7

    Google Scholar 

  • Nakajima T, Wolfgram F, Clark WG (1967) Identification of 1,4-methyl-histamine, 1,3-diaminopropane and 2,4-diaminobutyric acid in bovine brain. J Neurochem 14:1113–1118

    Google Scholar 

  • Nakamura H, Zimmerman CL, Pisano JJ (1979) Analysis of histidine-containing dipeptides, polyamines, and related amino acids by high-performance liquid chromatography: application tu guinea pig brain. Anal Biochem 93:423–429

    Google Scholar 

  • Oser BL, (1965) Hawk's physiological chemistry, 14th ed. McGraw-Hill, New York, pp 1235–1237

    Google Scholar 

  • Perlow MJ, Lake R (1980) Daily fluctuations in catecholamines, monoamine metabolites, cyclic AMP, and γ-aminobutyric acid. in: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol 1. Plenum Press, New York, pp 63–69

    Google Scholar 

  • Saavedra JM, Brownstein MJ, Kizer JS, Palkovits M (1976) Biogenic amines and related enzymes in the circumventricular organs of the rat. Brain Res 107:412–417

    Google Scholar 

  • Salberg DJ, Hough LB, Kaplan DE, Domino EF (1967) A reverse double isotope enzymatic histamine assay: advantages over single isotope methods. Life Sci 21:1439–1446

    Google Scholar 

  • Schaff RE, Beaven MA (1979) Increased sensitivity of th enzymatic isotopic assay of histamine: measurement of histamine in plasma and serum. Anal Biochem 94:425–430

    Google Scholar 

  • Schayer RW, Reilly MA (1973) Formation and fate of histamine in rat and mouse brain. J Pharmacol Exp Ther 184:33–40

    Google Scholar 

  • Schwartz J-C, Pollard H, Bischoff S, Rehault M, Verdiere-Sahuque M (1971) Catabolism of3H-histamine in the rat brain after intracisertal administration. Eur J Pharmacol 16:326–336

    Google Scholar 

  • Schwartz J-C, Rose C, Caillens H (1973) Metabolism of methylhistamine formed through a new pathway: decarboxylation ofL-3-methylhistidine. J Pharmacol Exp Ther 184:766–779

    Google Scholar 

  • Schwartz J-C, Barbin G, Tuong MDT, Duchemin A-M, Garbarg M, Quach TT, Rodergas E, Rose C (1980) Pharmacology and biochemistry of histamine receptors in brain. In: Yamamura HI, Olsen RW, Usdin E (eds) Psychopharmacology and biochemistry of neuro-transmitter receptors. Elsevier/North Holland, Amsterdam, New York, pp 279–300

    Google Scholar 

  • Schwartzman RM, Halliwell REW (1975) Thin-layer chromatographic assays of histamine and its metabolites in urine of man and dog. J Chromatogr 115:129–138

    Google Scholar 

  • Sebens JB, Korf J (1975) Cyclic AMP in cerebrospinal fluid: accumulation following probenecid and biogenic amines. Exp Neurol 46:333–344

    Google Scholar 

  • Soter NA, Austen KF, Wasserman SI (1980) Plateled histamine. New Engl J Med 303:756

    Google Scholar 

  • Stüttgen G, Jacob W (1952) Die H-Substanzen des menschlichen Liquors. Nervenarzt 23:60–63

    Google Scholar 

  • Subramanian N, Mulder AH (1976) Potassium-induced release of tritiated histamine from rat brain tissue slices. Eur J Pharmacol 35:202–206

    Google Scholar 

  • Swahn C-G, Sedvall G (1981) Identification and determination of tele-methylhistamine in cerebrospinal fluid by gas chromatography-mass spectrometry. J Neurochem 37:461–466

    Google Scholar 

  • Swahn C-G, Sandgärde B, Wiesel F-A, Sedvall G (1976) Simultaneous deteermination of the three major monoamine metabolites in brain tissue and body fluids by a mass fragmentographic method. Psychopharmacol 48:147–152

    Google Scholar 

  • Tallan HH, Moore S, Stein WH (1954) Studies on the free amino acids and related compounds in the tissues of the cat. J Biol Chem 211:927–939

    Google Scholar 

  • Tanaka K. Lin Y (1969) Histamine liberation into the cerebrospinal fluid by the drugs applied intraventricularly. Jpn J Pharmacol 19:510–514

    Google Scholar 

  • Taylor KM, Gfeller E, Snyder SH (1972) Regional localization of histamine and histidine in the brain of the rhesus monkey. Brain Res 41:171–179

    Google Scholar 

  • Tham R (1966) Gas chromatographic analysis of histamine metabolites in urine. Quantitative determination of ring methylated imidazoleacetic acids in healthy man. J Chromatogr 23:207–216

    Google Scholar 

  • Waldmeier PC, Feldtrauer JJ, Maitre L (1977) Methylhistamine: evidence for selective deamination by MAO type B in rat brain. J Neurochem 29:785–790

    Google Scholar 

  • Wassner SJ, Schlitzer JL, Li JB (1980) A rapid, sensitive method for the determination of 3-methylhistidine levels in urine and plasma using high-pressure liquid chromatography. Anal Biochem 104:284–289

    Google Scholar 

  • Wood JH (1980a) Physiology, pharmacology, and dynamics of cerebrospinal fluid. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol 1. Plenum Press, New York, pp 1–16

    Google Scholar 

  • Wood JH (1980b) Sites of origin and cerebrospinal fluid concentration gradients. ents. Neurotransmitters, their precursors and metabolites and cyclic nucleotides. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol 1. Plenum Press, New York, pp 53–62

    Google Scholar 

  • Young VR, Alexis SD, Baliga BS. Munro HN (1972) Metabolism of administered 3-methylhistidine. Lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acetyl-derivative. J Biol Chem 247:3592–3600

    Google Scholar 

  • Ziegler MG, Wood JH, Lake CR, Kopin IJ (1977) Norepinephrine and 3-methyoxy-4-hydroxyphenyl glycol gradients in human cerebrospinal fluid. Am J Psychiatry 134:565–568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant (MH-31805) from the National Institute of Mental Health

Statistical analyses and curve fitting were performed on the PROPHET computer system, a national resource supported by the Chemical-Biological Information Handling Program, Division of Research Resources, National Institutes of Health

Recipient of the Faculty Development Award in Pharmacology from the Pharmaceutical Manufacturers Association

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandelwal, J.K., Hough, L.B. & Green, J.P. Histamine and some of its metabolites in human body fluids. Klin Wochenschr 60, 914–918 (1982). https://doi.org/10.1007/BF01716947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01716947

Key words

Schlüsselwörter

Navigation