Skip to main content
Log in

Reticuloendothelial system function and histamine release in shock and trauma: Relationship to microcirculation

Funktion des Retikoendothelialen Systems und von Histaminfreisetzung in Schock und Trauma: Beziehungen zu Mikrozirkulation

  • 1. Adverse Reactions And Histamine Release In Anaesthesia And Surgery
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The material reviewed, and presented, here lends credence to the concept that the severity or course of the shock syndrome can be evaluated, quantitatively, at a tissue level by assessing RES phagocytic function. In general, the available data indicate that RE cell stimulants can adapt animals (and probably man) to the insults of circulatory shock and trauma; such substances could have important value in pretreating patients scheduled for massive surgery. The fact that a number of biologically active materials with vasotropic, and RE cell depressant, effects appear in the tissues and blood in shock, particularly when the organism becomes refractory to therapy, suggests that the final functional deterioration of the cardiovascular system may be due to the specific action of one or more of these biologically active materials; such a contender is, without doubt, histamine.

Histamine has all the attributes of a typical shock-toxin. Evidence is presented that histamine can be a potent splanchnic (shock target-organ) arteriolar (microcirculatory) dilator even in physiologic (circulating) concentrations. Concentrations of histamine found in plasma of shocked animals and human subjects would produce extremely potent splanchnic vasodilator actions at the microcirculatory level. Evidence is also presented to indicate that microvessels can synthesize and release free, pharmacologically-active histamine.

Endogenous release of histamine (e.g., with compound 48/80) produces dose-dependent and lethal shock-like anaphylactic actions; such release also produces, dose-dependently, RES phagocytic depression. Repeated administration of the histamine releaser, compound 48/80, results in almost a 400% enhancement of RES phagocytic function and cross-tolerance to lethal doses of whole-body trauma. Such results raise the possibility that the RES plays a pivotal role in the circulatory manifestations of compound 48/80 and anaphylactic-type (histamine release) shock syndromes.

Evidence is presented to indicate that H1-receptor antihistamines can ameliorate circulatory shock (and trauma) and prevent RES phagocytic depression, whereas H2-receptor antihistamines do the reverse. Direct in situ microscopy revealed that the former types of histamine receptor blockers prevent tissue ischemia, whereas H2-receptor blockers exacerbate tissue ischemia in circulatory shock. Histamineinduced vasodilatation via H2-receptors may thus be a beneficial effect in circulatory shock and trauma; one must think seriously about the potential value of antihistamines as adjuvant drugs in the treatment of low-flow states and as preoperative medication.

Collectively, the data reviewed herein could be taken as strong support for a pivotal role for the release (and possible synthesis) of free, pharmacologically-active histamine in shock.

Zusammenfassung

Das hier referierte und gezeigte Material bestärkt das Konzept, daß die Schwere oder der Verlauf des Schocksyndroms quantitativ auf der Gewebeebene durch Abschätzung der RES Phagozytosefunktion berechnet werden kann. Im allgemeinen deuten die verfügbaren Daten an, daß RE-Zellstimulantien Tiere (und wahrscheinlich auch Menschen) auf Kreislaufschock und Traumasituationen adaptieren können; solche Substanzen können einen großen Wert in der Vorbehandlung von für große Operationen vorgesehene Patienten haben. Die Tatsache, daß eine Anzahl biologisch aktiver Materialien mit vasotropen und RE-Zell depressiven Wirkungen gerade dann im Gewebe und Blut erscheint, wenn der Organismus zunehmend therapierefraktär wird, läßt vermuten, daß die finale funktionelle Verschlechterung der Kreislaufsituation in der spezifischen Wirkung von einem oder mehreren dieser biologisch aktiven Materialien begründet ist; solch ein Teilhaber ist ohne jeden Zweifel das Histamin.

Histamin hat alle Eigenschaften eines typischen Schocktoxins. Es werden Beweise dafür erbracht, daß Histamin, sogar in physiologischen (zirkulierenden Konzentrationen ein potenter Splanchnikus (Schockzielorgan) arteriolärer (mikorzirkulatorischer) Dilator ist. Die gemessenen Plasmahistaminkonzentrationen von Schocktieren und Menschen würden extrem starke vasodilatatorische Wirkungen im Mikrozirkulationsbereich des Splanchnikusgebietes auslösen. Es wird ebenfalls erwiesen, daß Mikrogefäße freies, pharmakologisch aktives Histamin zu synthetisieren und freizusetzen in der Lage sind.

Endogene Histaminfreisetzung (z.B. mit Verbindung 48/80) führt zu dosisabhängigen und letalen schockähnlichen anaphylaktischen Reaktionen; eine solche Freisetzung führt ebenfalls dosisabhängig zur Einschränkung der RES phagozytären Funktion. Wiederholte Gabe des Histaminfreisetzers 48/80 führt zu einer beinahe 400%-igen Erhöhung der RES phagozytären Funktion und Kreuztoleranz von letalen Dosen von Ganzkörper-Trauma. Solche Ergebnisse lassen es möglich erscheinen, daß das RES eine Schlüsselrolle in der Kreislaufmanifestation durch die Verbindung 48/80 und seines anaphylaktischen Schocksyndroms durch Histaminfreisetzung besitzt.

Es wird gezeigt, daß H1-Rezeptorantagonisten zur Verbesserung des Kreislaufschockgeschehens (und Trauma) führen und dabei die RES Depression verhindert wird, während H2-Rezeptorantagonisten genau das Gegenteil tun. Direkte in situ Miroskopie zeigte, daß H1-Rezeptorblocker Gewebeischämie verhindern, während H2-Rezeptorblocker die Gewebeischämie im Kreislaufschock noch verstärken. Histamininduzierte Vasodilatation durch H2-Rezeptoren ist damit möglicherweise ein Effekt der im Kreislaufschock und Trauma von Vorteil ist. Es muß deshalb über den potentiellen Wert von Antihistaminika als adjuvante Arzneimittel in der Behandlung von „Niedrigflußzuständen“ und als preoperative Medikation sorgfältig nachgedacht werden.

Zusammengefaßt können die hier referierten Daten als starke Unterstützung für eine Schlüsselrolle von freigesetztem (und möglicherweise gebildetem freien pharmakologisch aktivem Histamin bei Schockzuständen angesehen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altura BM (1967) Evaluation of neurohumoral substances in local regulation of blood flow. Am J Physiol 212:1447–1454

    Google Scholar 

  • Altura BM (1971) Chemical and humoral regulation of blood flow through the precapillary sphincter. Microvasc Res 3:361–384

    Google Scholar 

  • Altura BM (1975) Glucocorticoid-induced protection in circulatory shock: Role of reticuloendothelial system function. Proc Soc Exp Biol Med 150:202–206

    Google Scholar 

  • Altura BM (1976a) Sex and estrogens in protection agains circulatory stress reactions. Am J Physiol 231:842–847

    Google Scholar 

  • Altura BM (1976b) DPAVP: a vasopressin analog with selective microvascular and RES actions for the treatment of circulatory shock in rats. Eur J Pharmacol 37:155–167

    Google Scholar 

  • Altura BM (1978a) Humoral, hormonal, and myogenic mechanisms in microcirculatory regulation. In: Kaley G, Altura BM (eds) Microcirculation, vol II. University Park Press, Baltimore, pp 431–502

    Google Scholar 

  • Altura BM (1978b) Role of prostaglandins and histamine in reactive hyperemia: in vivo studies on single mesenteric arterioles. Prostagland Med 1:323–331

    Google Scholar 

  • Altura BM (1978c) Role of spleen in choline stimulation of reticuloendothelial system and resistance to acute hemorrhage. Proc Soc Exp Biol Med 158:77–80

    Google Scholar 

  • Altura BM (1979) Reticuloendothelial system (RES) phagocytic depression in shock is ameliorated by H1 receptor antihistamines. Eur J Pharmacol 59:165–167

    Google Scholar 

  • Altura BM (1980a) Reticuloendothelial cells and host defense. Adv Microcirc 9:252–295

    Google Scholar 

  • Altura BM (1980b) Reticuloendothelial function and humoral factors in shock and trauma. Reanimation 11:73–91

    Google Scholar 

  • Altura BM (1980c) Reticuloendothelial system and neuro-endocrine stimulation in shock therapy. Adv Shock Res 3:3–25

    Google Scholar 

  • Altura BM (1982) Microcirculatory and vascular smooth muscle behavior in the Brattleboro rat: Relationship to reticuloendothelial system-function and resistance to shock. In: Valtin H, Sokol H (eds) The Brattleboro Rat. Ann NY Acad Sci (in press)

  • Altura BM, Altura BT (1974a) Peripheral vascular actions of glucocorticoids and their relationship to protection in circulatory shock. J Pharmacol Exp Ther 190:300–315

    Google Scholar 

  • Altura BM, Altura BT (1974b) Effects of local anesthetics, antihistamines, and glucocorticoids on peripheral blood flow and vascular smooth muscle. Anesthesiology 41:197–214

    Google Scholar 

  • Altura BM, Altura BT (1978) Interactions of locally produced humoral substances in regulation of the microcirculation. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilatation. Karger, Basel, pp 98–106

    Google Scholar 

  • Altura BM, Halevy S (1978a) Circulatory shock, histamine, and antihistamines: Therapeutic aspects. In: Rocha e Silva M (ed) Handbook of experimental pharmacology, vol XVIII (part 2), Histamine and anti-histamines. Springer, Berlin Heidelberg New York, pp 575–602

    Google Scholar 

  • Altura BM, Halevy S (1978b) Cardiovascular actions of histamine. In: Rocha e Silva M (ed) Handbook of experimental pharmacology, vol XVIII (part 2, Histamine and anti-histamines. Springer, Berlin Heidelberg New York, pp 1–39

    Google Scholar 

  • Altura BM, Halevy S (1978c) Beneficial and detrimental actions of histamine H1- and H2-receptor antagonists in circulatory shock. Proc Natl Acad Sci USA 75:2941–2944

    Google Scholar 

  • Altura BM, Hershey SG (1967) Use of reticuloendothelial phagocytic function as an index in shock therapy. Bull NY Acad Med 43:259–266

    Google Scholar 

  • Altura BM, Hershey SG (1968a) Res phagocytic function in trauma and adaptation to experimental shock. Am J Physiol 215:1414–1419

    Google Scholar 

  • Altura BM, Hershey SG (1968b) Influence of vasopressor drugs on reticuloendothelial phagocytic function in experimental shock. In: Schildt B, Thoren L (eds) Intermedes Proceedings 1968: Combined Injuries and Shock. Almquist and Wiksell, Stockholm, pp 185–193

    Google Scholar 

  • Altura BM, Hershey SG (1970) Influence of glyceryl trioleate on the RES and survival after experimental shock. J Pharmacol Exp Ther 175:555–564

    Google Scholar 

  • Altura BM, Hershey SG (1971) Acute intestinal ischemia shock and reticulo-endothelial system function. J Reticuloendoth Soc 10:361–371

    Google Scholar 

  • Altura BM, Hershey SG (1972) Sequential changes in reticuloendothelial system function after acute hemorrhage. Proc Soc Exp Biol Med 139:935–939

    Google Scholar 

  • Altura BM, Hershey SG (1973) Reticuloendothelial function in experimental injury and tolerance to shock. Adv Exp Med Biol 33:545–569

    Google Scholar 

  • Altura BM, Hershey SG, Hyman C (1965) Influence of choline on the reticuloendothelial system and on survival after experimental shock. J. Reticuloendoth Soc 3:57–64

    Google Scholar 

  • Altura BM, Lefer AM, Schumer W (eds) (1982) Handbook of shock and trauma. Raven Press, New York (in press)

    Google Scholar 

  • Altura BM, Saba TM (eds) (1981) Pathophysiology of the reticuloendothelial system. Raven Press, New York

    Google Scholar 

  • Altura BM, Zweifach BW (1967) Endogenous histamine formation and vascular reactivity. Am J Physiol 212:559–564

    Google Scholar 

  • Baez S (1968) Vascular smooth muscle: Quantitation of cell thickness in the wall of arterioles in living animals. Science 159:526–538

    Google Scholar 

  • Barsoum GS, Smirk FHC (1935) Observation on the increase in the concentration of a histamine-like substance in human venous blood during a period of reactive hyperemia. Clin Sci 2:353–362

    Google Scholar 

  • Brody MJ (1966) Neurohumoral mediation of active reflex vasodilatation. Fed Proc 25:1583–1592

    Google Scholar 

  • Brody MJ, Kneuepfer M, Strait MR, Shaffer RA (1979) Histamine receptors in vascular smooth muscle: Mechanisms of vasodilatation. In: Yellin TO (ed) Histamine Receptors. Spectrum, Holliswood, pp 115–129

    Google Scholar 

  • Carr I (1973) The macrophage: A review of ultrastructure and function. Academic Press, New York

    Google Scholar 

  • Chand N, Altura BM (1980a) Occurrence of histamine H2-receptors in isolated pulmonary blood vessels of dogs and rats. Experientia 36:1186–1187

    Google Scholar 

  • Chand N, Altura BM (1980b) Reactivity and contractility of rat main pulmonary artery to vasoactive agents. J Appl Physiol 49:1016–1021

    Google Scholar 

  • Chand N, Altura BM (1981) Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: Role in lung vascular diseases. Science 213:1376–1379

    Google Scholar 

  • Chand N, Dhawan BN, Srimal RC, Rahmans NH, Shukla RK, Altura BM (1980) Reactivity of trachea, bronchi, and lung strips to histamine and carbachol in rhesus monkeys. J Appl Physiol 49:729–734

    Google Scholar 

  • Chand N, Dhawan BN, Srimal RC, Rahman, MH, Shukla RK, Altura BM (1981) Reactivity of airway smooth muscles to bronchoactive agents in langur monkeys. J Appl Physiol 50:513–516

    Google Scholar 

  • Chand N, Eyre P (1975) Classification and biological distribution of histamine receptor sub-types. Agents Actions 5:277–295

    Google Scholar 

  • Donovan AJ (1967) The effect of surgery on reticuloendothelial function. Arch Surg 94:247–250

    Google Scholar 

  • Guth PH, Smith E (1979) H1- and H2-histamine receptors in the gastric microcirculation. In: Yellin TA (ed) Histamine receptors. Spectrum, Holliswood, pp 131–141

    Google Scholar 

  • Haddy, FJ, Scott Jr JB (1978) Active hyperemia, reactive hyperemia, and autoregulation of blood flow. In: Kaley G, Altura BM (eds) Microcirculation, vol II. University Park Press, Baltimore, pp 531–544

    Google Scholar 

  • Halevy S, Altura BM (1977) H1- and H2-histamine receptor antagonists and protection against traumatic shock. Proc Soc Exp Biol Med 154:453–456

    Google Scholar 

  • Halpern BN (ed) (1957) Physiopathology of the reticulo-endothelial system. Blackwell, Oxford

    Google Scholar 

  • Hershey SG (1980) The reticuloendothelial system: Relationship to shock and host defense. In: Kaley G, Altura BM (eds) Microcirculation, vol III. University Park Press, Baltimore, pp 69–105

    Google Scholar 

  • Hershey SG, Altura BM (1966) Effect of pretreatment with aggregate albumin on reticuloendothelial system activity and survival after experimental shock. Proc Soc Exp Biol Med 122:1195–1199

    Google Scholar 

  • Hershey SG, Altura BM (1968) Influence of RES stimulating materials compatible for man on phagocytosis and survival after experimental shock. In: Schilt B, Thoren L (eds) Intermedes Proceedings 1968: Combined Injuries and Shock. Almquist and Wiksell, Stockholm, pp 195–203

    Google Scholar 

  • Hershey SG, Altura BM (1969a) Function of the reticuloendothelial system in experimental shock and combined injury. Anesthesiology 30:138–143

    Google Scholar 

  • Hershey SG, Altura BM (1969b) The effects of vasoactive drugs on reticuloendothelial function in experimental shock and combined injury. Anesthesiology 30:144–149

    Google Scholar 

  • Hershey SG, Altura BM (1971) Shock: Pathogenesis and therapy. In: Soma LR (ed) A textbook of veterinary anesthesia. Williams and Wilkins, Baltimore, pp 529–571

    Google Scholar 

  • Hershey SG, Altura BM (1973) Vasopressors and low-flow states. In: Zauder HL (ed) Pharmacology of adjuvant drugs. Davis Co, Philadelphia, pp 31–76

    Google Scholar 

  • Hruza Z (1971) Resistance to trauma. Thomas, Springfield

    Google Scholar 

  • Kaley G (1978) Microcirculatory-endocrine interactions: Role of prostaglandins. In: Kaley G, Altura BM (eds) Microcirculation, vol II. University Park Press, Baltimore, pp 503–529

    Google Scholar 

  • Kaplan JE, Saba TM (1976) Humoral deficiency and reticuloendothelial depression after traumatic shock. Am J Physiol 230:7–14

    Google Scholar 

  • Kovach AGB, Stone HB, Spitzer JJ (eds) (1973) Neurohumoral and metabolic aspects of injury. Plenum Press, New York

    Google Scholar 

  • Lanciault G, Jacobson ED (1976) The gastrointestinal circulation. Gastroenterology 71:851–873

    Google Scholar 

  • Lefer AM (1973) Blood borne humoral factors in the pathophysiology of circulatory shock. Circ Res 32:129–139

    Google Scholar 

  • Lefer AM (1978) Properties of cardioinhibitory factors produced in shock. Fed Proc 37:2734–2740

    Google Scholar 

  • Lewis T (1927) The blood vessels of the human skin and their responses. Shaw, London

    Google Scholar 

  • Loegering DJ, Kaplan JE, Saba TM (1976) Correlation of plasma lysosomal enzyme levels with hepatic reticuloendothelial function after trauma. Proc Soc Exp Biol Med 152:42–46

    Google Scholar 

  • Lorenz W, Doenicke A (1978) Anaphylactoid reactions and histamine release by intravenous drugs used in surgery and anesthesia. In: Watkins J, Ward MA (eds) Adverse response to intravenous drugs. Academic Press, London, pp 83–112

    Google Scholar 

  • Lorenz W, Doenicke A, Schoning B, Neugebauer E (1980) The role of histamine in adverse reactions to intravenous agents. In: Thornton J (ed) Adverse reactions of anaesthetic drugs. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 169–238

    Google Scholar 

  • Olcay I, Holper K, Kitahama A, Miller RH, Drapanas T, Trejo RA, DiLuzio NR, (1974) Reticuloendothelial function: Determinant for survival following hepatic ischemia in the baboon. Surgery 76:643–653

    Google Scholar 

  • Owen DAA (1977) Histamine receptors in the cardiovascular system. Gen Pharmacol 8:141–156

    Google Scholar 

  • Parsons ME, Owen DAA, Ganellin CR, Durant GJ (1977). Dimaprit-[S-[3-(N, N-dimethylamino) propyl] isothiourea]-A highly specific histamine H2-receptor agonist, part I. Pharmacology. Agents Actions 7:31–37

    Google Scholar 

  • Paton WDM (1956) The mechanism of histamine release. In: Wolstenholme GEW, O'Connor CM (eds) Ciba Foundation Symposium on Histamine. Little, Brown and Co., Boston, pp 59–73

    Google Scholar 

  • Reichard SM (1967) Factors that diminish radiation lethality. Radiology 89:501–508

    Google Scholar 

  • Reichard SM (1972) RES stimulation and transfer of protection against shock. J Reticuloendoth Soc 12:604–614

    Google Scholar 

  • Rothschild AM (1966) Histamine release by basic compounds. In: Rocha e Silva M (ed) Handbook of experimental pharmacology, vol. XVIII (part I), Histamine and antihistamines. Springer, Berlin Heidelberg New York, pp 386–430

    Google Scholar 

  • Saba TM (1970) Physiology and physiopathology of the reticuloendothelial system. Arch Intern Med 126:1031–1052

    Google Scholar 

  • Saba TM (1975) Reticuloendothelial systemic host defense after surgery and traumatic shock. Circ Shock 2:91–108

    Google Scholar 

  • Saba TM, Blumenstock PA, Scovill, WA, Bernard H (1978). Cryoprecipitate reversal of opsonic α2-surface binding glycoprotein deficiency in septic surgical and trauma patients. Science 201:622–624

    Google Scholar 

  • Saba TM, Scovill WA (1975) Effect of surgical trauma on host defense. Surg Ann 1975:71–102

    Google Scholar 

  • Schayer RW (1960) Relationship of stress-induced histidine decarboxylase to circulatory homeostasis and shock. Science 131:226–227

    Google Scholar 

  • Schayer RW (1962) Evidence that induced histamine is an intrinsic regulator of the microcirculatory system. Am J Physiol 202:66–72

    Google Scholar 

  • Schayer RW (1974) Histamine and microcirculation. Life Sci 15:391–396

    Google Scholar 

  • Schildt B (1976) The present view of RES and shock. Adv Exp Med Biol 73A:375–387

    Google Scholar 

  • Schildt B, Gertz L, Wilde L (1974) Differentiated reticuloendothelial system (RES) function in some critical surgical conditions. Acta Chir Scand 140:611–617

    Google Scholar 

  • Stuart AE (1970) The reticulo-endothelial system. Livingstone, Edingburgh

    Google Scholar 

  • Vernon-Roberts B (1972) The macrophage. Cambridge University Press, Cambridge

    Google Scholar 

  • Wisse E, Knook WL (eds) (1977) Kupffer cells and other liver sinusoidal cells. Elsevier, Amsterdam

    Google Scholar 

  • Zweifach BW (1964) Relation of the reticulo-endothelial system to natural and acquired resistance in shock. In: Hershey SG (ed) Shock. Little, Brown and Co., Boston, pp 271–286

    Google Scholar 

  • Zweifach BW, Fronek K (1975) The interplay of central and peripheral factors in irreversible hemorrhagic shock. Prog Cardiovasc Dis 18:147–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Research Grants H1 18002, HL 18015 and DA 02339 from the U.S.P.H.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altura, B.M. Reticuloendothelial system function and histamine release in shock and trauma: Relationship to microcirculation. Klin Wochenschr 60, 882–890 (1982). https://doi.org/10.1007/BF01716944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01716944

Key words

Schlüsselwörter

Navigation