Skip to main content
Log in

A single-bead decode strategy using electrospray ionization mass spectrometry and a new photolabile linker: 3-Amino-3-(2-nitrophenyl)propionic acid

  • Research Papers
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

A new linker that employs a photosensitive 3-ammo-3-(2-nitrophenyl)propionyl functionality (ANP-resin) has been developed for the preparation of C-terminal carboxamides. A wide range of carboxamides were prepared and identified using the ANP-resin and electrospray ionization mass spectrometry. A single bead containing tripeptide Fmoc-Asp-Arg(Tos)-Val-NH2 was isolated, photocleaved and the peptide was characterized by tandem mass spectrometry, thereby verifying a library decode strategy that avoids complex tagging procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For recent reviews see: Felder, E.D.,The challenge of preparing and testing combinatorial compound libraries in the fast lane, at the front end of drug development, Chimia, 48 (1994) 531–541.

    Google Scholar 

  2. For recent reviews see: Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gordon, E.M.,Applications of combinatorial technologies to drug discovery, J. Med. Chem., 37 (1994) 1233–1251 and 1385–1401.

    Google Scholar 

  3. For recent reviews see: Baum, R.M.,Combinatorial approaches provide fresh leads for medicinal chemistry, Chem. Eng. News, (1994) pp20–26.

  4. For recent reviews see: Pavia, M.R., Sawyer, T.K. and Moos, W.H.,The generation of molecular diversity, Bioorg. Med. Chem. Lett., 3 (1993) 387–396 and references cited therein.

    Google Scholar 

  5. Covey, T.R., Bonner, R.F., Shushan, B.I. and Henion, J.,The determination of protein oligonucleotide and peptide molecular weights by ion-spray mass spectrometry, J. Rapid Commun. Mass Spectrom., 2 (1988) 249–256.

    Google Scholar 

  6. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.K. and Whitehouse, C.M.,Electrospray ionization-principles and practice, Mass Spectrom. Rev., 9 (1990) 37–70.

    Google Scholar 

  7. For peptides see: Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T. and Cuervo, J.H.,Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature, 354 (1991) 84–86.

    Google Scholar 

  8. For peptides see: Zuckermann, R.N., Kerr, J.M., Siani, M.A., Banville, S.C. and Santi, D.V.,Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis, Proc. Natl. Acad. Sci. USA, 89 (1992) 4505–4506.

    Google Scholar 

  9. For oligocarbamates see: Cho, C.Y., Moran, E.J., Cherry, S.R., Stephans, J.C., Fodor, S.P.A., Adams, C.L., Sundaram, A., Jacobs, J.W. and Schultz, P.G.,An unnatural biopolymer, Science, 261 (1993) 1303–1305.

    Google Scholar 

  10. For peptoids see: Zuckermann, R.N., Martin, E.J., Spellmeyer, D.C., Stauber, G.B., Shoemaker, K.R., Kerr, J.M., Figliozzi, G.M., Goff, D.A., Siani, M.A., Simon, R.J., Banville, S.C., Brown, E.G., Wang, L., Richter, L.S. and Moos, W.H.,Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library, J. Med. Chem., 37 (1994) 2678–2685.

    Google Scholar 

  11. For peptoids see: Pei, Y. and Moos, W.H.,Post-modification of peptoid side chains: [3+2] cycloaddition of nitrile oxides with alkenes and alkynes on the solid-phase, Tetrahedron Lett., 32 (1994) 5825–5828.

    Google Scholar 

  12. Bodanszky, M. and Sheehan, J.T.,Active esters and resins in peptide synthesis, Chem. Ind., (1964) 1423–1424.

  13. Bodanszky, M. and Sheehan, J.T.,Active esters and resins in peptide synthesis, Chem. Ind., (1966) 1597–1598.

  14. Manning, M.,Synthesis by the Merrifield method of a protected nonapeptide amide with the amino acid sequence of oxytocin, J. Am. Chem. Soc., 90 (1968) 1348–1349.

    Google Scholar 

  15. Atherton, E., Logan, C.J. and Sheppard, R.C.,Peptide synthesis: Part0 2. Procedures for solid-phase synthesis using N α-fluorenylmethoxycarbonylamino-acids on polyamide supports. Synthesis of substance P and of acyl carrier 65–74 decapeptide, J. Chem. Soc., Perkin Trans. I (1981) 538–546.

    Google Scholar 

  16. Pietta, P.G. and Marshall, G.R.,Amide protection and amide supports in solid-phase peptide synthesis, J. Chem. Soc., Chem. Commun., (1970) 650–651.

  17. Orlowski, R.C., Ealter, R. and Winkler, D.L.,Study of benzhydrylamine-type polymers. Synthesis and use of p-methoxybenz-hydrylamine resin in the solid-phase preparation of peptides, J. Org. Chem., 41 (1976) 3701–3705.

    Google Scholar 

  18. Matsueda, G.R. and Stewart, J.M.,A p-methylbenzhydryl amine resin for improved solid-phase synthesis of peptide amides, Peptides, 2 (1981) 45–50.

    Google Scholar 

  19. Tam, J.P.,A gradative deprotection strategy for the solid-phase synthesis of peptide amides using p-(acyloxy)benzhydrylamine resin and the S N2deprotection method, J. Org. Chem., 50 (1985) 5291–5298.

    Google Scholar 

  20. Ajayaghosh, A. and Pillai, V.N.R.,2′-Nitrobenzhydryl polystyrene resin: a new photosensitive polymeric support for peptide synthesis, J. Org. Chem., 52 (1987) 5714–5717.

    Google Scholar 

  21. Ajayaghosh, A. and Pillai, V.N.R.,Polymer-supported synthesis of protected peptide segments on a photosensitive o-nitro(α-methyl)bromobenzyl resin, Tetrahedron, 44 (1988) 6661–6664.

    Google Scholar 

  22. Devaky, K.S. and Pillai, V.N.R.,Selective conversion of chloromethyl and bromomethyl groups to aminomethyl groups in multifunctional crosslinked polystyrenes, Eur. Polym. J., 24 (1988) 209–213.

    Google Scholar 

  23. Ajayaghosh, A. and Pillai, V.N.R.,Solid-phase synthesis of N-methyl- and N-ethylamides of peptides using photolytically detachable ((3-nitro-4-((alkylamino) methyl)benzamido) methyl) polystyrene resin, J. Org. Chem., 55 (1990) 2826–2829.

    Google Scholar 

  24. Ajayaghosh, A. and Pillai, V.N.R.,Solid-phase synthesis and C-terminal amidation of peptides using a photolabile o-nitrobenz-hydrylamino polystyrene support, Tetrahedron Lett., 36 (1995) 777–780.

    Google Scholar 

  25. Rich, D.H. and Gurwara, S.K.,Removal of C-terminal peptide amides from a 3-nitro-4-aminomethyl-benzoyl amide resin by photolysis, Tetrahedron Lett., (1975) 301–304.

  26. Pillai, V.N.R., Mutter, M. and Bayer, E.,3-Nitro-4-aminomethylbenzoylderivate von polyethylenglykolen: Eine neue klasse von photosensitiven loslichen polymeren tragern zur synthese von C-terminalen peptidamiden, Tetrahedron Lett., (1979) 3409–3412.

  27. Pillai, V.N.R., Mutter, M., Bayer, E. and Gatfield, I.,New, easily removable poly(ethylene glycol) supports for the liquid-phase method of peptide synthesis, J. Org. Chem., 45 (1980) 5364–5370.

    Google Scholar 

  28. Holmes, C.P. and Jones, D.G.,Reagents for combinatorial organic synthesis: development of a new o-nitrobenzyl photolabile linker for solid phase synthesis, J. Org. Chem., 60 (1995) 2318–2319.

    Google Scholar 

  29. Hammer, R.P., Albericio, F., Gera, L. and Barany, G.,Practical approach to solid-phase synthesis of C-terminal peptide amides under mild conditions based on a photolysable anchoring linkage, Int. J. Pept. Protein Res., 36 (1990) 31–45 and references cited therein.

    Google Scholar 

  30. Patchornik, A., Amit, B. and Woodward, R.B.,Photosensitive protecting groups, J. Am. Chem. Soc., 92 (1970) 6333–6335.

    Google Scholar 

  31. Pillai, V.N.R.,Photoremovable protecting groups in organic synthesis, Synthesis, (1980) 1–26.

  32. Chow, Y.L., In Patai, S. (Ed.) The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives, Wiley, New York, NY, 1982, p. 181.

    Google Scholar 

  33. For oligonucleotide tags see: Brenner, S. and Lerner, R.A.,Encoded combinatorial libraries, Proc. Natl. Acad. Sci. USA, 89 (1992) 5181–5183.

    Google Scholar 

  34. Nielson, J., Brenner, S. and Janda, K.D.,Synthetic methods for the implementation of encoded combinatorial chemistry, J. Am. Chem. Soc., 115 (1993) 9812–9813.

    Google Scholar 

  35. Needels, M.N., Jones, D.G., Tate, E.H., Heinkel, L.M., Kochersperger, W.J., Dower, R.W. and Barrett, M.A.,Generation and screening of an oligonucleotide-encoded synthetic peptide library, Proc. Natl. Acad. Sci. USA, 90 (1993) 10700–10704.

    Google Scholar 

  36. For peptide tags see: Nikolaiev, V., Stierandova, A., Krchňák, V., Seligmann, B., Lnam, K.S., Salman, S.E. and Lebl, M.,Peptide-encoding for structure determination of nonsequenceable polymers within libraries synthesized and tested on solid-phase supports, Pept. Res., 6 (1993) 161–170.

    Google Scholar 

  37. Kerr, J.M., Banville, S.C. and Zuckermann, R.N.,Encoded combinatorial peptide libraries containing non-natural amino acids, J. Am. Chem. Soc., 115 (1993) 2529–2531.

    Google Scholar 

  38. For molecular tags see: Ohlmeyer, M.H.J., Swanson, R.N., Dillard, J.C., Reader, J.C., Asouline, G., Kobayashi, R., Wigler, M. and Still, W.C.,Complex synthetic chemical libraries indexed with molecular tags, Proc. Natl. Acad. Sci. USA, 90 (1993) 10922–10926.

    Google Scholar 

  39. Borchardt, A. and Still, W.C.,Synthetic receptor binding elucidated with an encoded combinatorial library, J. Am. Chem. Soc., 116 (1994) 373–374.

    Google Scholar 

  40. Nestler, H.P., Bartlett, P.A. and Still, W.C.,A general method for molecular tagging of encoded combinatorial chemistry libraries, J. Org. Chem., 59 (1994) 4723–4724.

    Google Scholar 

  41. See also: Janda, K.D.,Tagged versus untagged libraries: methods for the generation and screening of combinatorial chemical libraries, Proc. Natl. Acad. Sci. USA, 91 (1994) 10779–10785.

    Google Scholar 

  42. See also: Profft, E. and Becker, F.-J.,Über die Kondensation von β-aryl-β- Amino-Sauren mit γ-Valero- und ε-Caprolactimathern und die Cycliserierungsmoglichkeit der erhaltenen Kondensationsprodukte, J. Prakt. Chem., 30 (1965) 18–38.

    Google Scholar 

  43. See also: Mylari, B.L., Zembrowski, W.J., Beyer, T.A., Aldinger, C.E. and Siegel, T.W.,Orally active aldose reductase inhibitors: indazoleacetic, oxopyridazineacetic, and oxopyridopyridazineacetic acid derivatives, J. Med. Chem., 35 (1992) 2155–2162.

    Google Scholar 

  44. Plunkett, M.J. and Ellman, J.A.,Solid-phase synthesis of structurally diverse 1,4-benzodiazepine derivatives using Stille coupling reaction, J. Am. Chem. Soc., 117 (1995) 3306–3307.

    Google Scholar 

  45. Milton, R.C., Becker, E., Milton, S.C., Baxter, J.E. and Elsworth, J.F.,Improved purities for Fmoc amino acids from Fmoc-ONSu, Int. J. Pept. Protein Res., 30 (1987) 431–432.

    Google Scholar 

  46. Dass, C., Kusmierz, J.J., Desiderio, D.M., Jarvis, S.A. and Green, B.N.,Electrospray mass spectrometry for the analysis of opioid peptides and for the quantification of endogenous methionine, enkephalin and β-endorphin, J. Am. Soc. Mass Spectrom., 2 (1991) 149–156.

    Google Scholar 

  47. Fouda, H., Nocerini, M., Schneider, R. and Gedutis, C.,Quantitative analysis by high performance liquid chromatography atmospheric pressure chemical ionization mass spectrometery: the determination of the renin inhibitor CP-80,794 in human serum, J. Am. Soc. Mass Spectrom., 2 (1991) 164–167.

    Google Scholar 

  48. Henriksen, D.B., Breddam, K. and Buchardt, O.,Peptide amidation by enzymatic transacylation and photolysis, Int. J. Pept. Protein Res., 41 (1993) 169–180.

    Google Scholar 

  49. Rich, D.H. and Gurwara, S.K.,Preparation of a new o-nitrobenzyl resin for solid-phase synthesis of tert-butyloxycarbonyl-protected peptide acids, J. Am. Chem. Soc., 97 (1975) 1575–1579.

    Google Scholar 

  50. Barany, G. and Albericio, F.,A three-dimensional orthogonal protection scheme for solid-phase peptide synthesis under mild conditions, J. Am. Chem. Soc., 107 (1985) 4936–4942.

    Google Scholar 

  51. Hunt, D.F., Yates III, J.R., Shabanowitz, J., Winston, S. and Hauer, C.R.,Protein sequencing by tandem mass spectrometry, Proc. Natl. Acad. Sci. USA, 83 (1986) 6233–6237.

    Google Scholar 

  52. Biemann, K. and Martin, S.A.,Mass-spectrometric determination of the amino-acid sequence of peptides and proteins, Mass Spectrom. Rev., 6 (1987) 1–76.

    Google Scholar 

  53. For related studies see: Brummel, C.L., Lee, I.N.W., Zhou, Y., Benkovic, S.J. and Winograd, N.,A mass spectrometric solution to the address problem of combinatorial libraries, Science, 264 (1994) 399–402.

    Google Scholar 

  54. Zambias, R.A., Boulton, D.A. and Griffin, P.R.,Microchemical structural determination of a peptoid covalently bound to a polymeric bead by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Tetrahedron Lett., 35 (1994) 4283–4286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, B.B., Wagner, D.S. & Geysen, H.M. A single-bead decode strategy using electrospray ionization mass spectrometry and a new photolabile linker: 3-Amino-3-(2-nitrophenyl)propionic acid. Mol Divers 1, 4–12 (1995). https://doi.org/10.1007/BF01715804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01715804

Keywords

Navigation