Skip to main content
Log in

Blood pressure in essential hypertension correlates with the concentration of a circulating inhibitor of the sodium pump

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

The influence of serum from patients with essential hypertension on the sodium efflux rate constants of human lymphocytes and on the activity of isolated (Na++K+)-ATPase was investigated. The ouabain-sensitive sodium efflux rate constant was significantly decreased (p<0.001) in the sera of 19 hypertensives (1.92±0.11 h−1) compared with the sera of 30 normotensives (2.44±0.07 h−1). The ouabain-insensitive sodium efflux was unaffected. These results corresponded with a significant difference (p<0.005) of (Na++K+)-ATPase activity (1.03±0.04 mU/ml and 0.079±0.06 mU/ml), when an isolated (Na++K+)-ATPase was incubated with the sera of 22 normotensives or 18 hypertensives. Both the rate constant of ouabain-sensitive sodium efflux and the (Na++K+)-ATPase activity correlated significantly with the diastolic and systolic blood pressure (p<0.001). These data, therefore, demonstrated the close relationship between essential hypertension and the concentration of a circulating inhibitor of the sodium pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

EGTA:

Ethyleneglycol bis(2-aminoethyl)-N,N,N′,N′-tetraacetic acid

References

  1. Akagawa K, Hara N, Tsukada Y (1984) Partial purification and the characters of the inhibitors to NaK-ATPase and ouabain binding in the bovine central nervous system. J Neurochem 42:775–780

    Google Scholar 

  2. Ambrosioni E, Costa FV, Montebugnoli L, Tartagni F, Magnani B (1982) Increased intralymphocytic sodium content in essential hypertension: An index of impaired Na+ cellular metabolism. Clin Sci 61:181–186

    Google Scholar 

  3. Beretta-Piccoli C, Davies DL, Boddy K, Brown JJ, Cumming AMM, East BW, Fraser R, Lever AF, Padfield PL, Semple PF, Robertson JIS, Weidmann P, Williams ED (1982) Relation of arterial pressure with body sodium, body potassium and plasma potassium in essential hypertension. Clin Sci 63:257–270

    Google Scholar 

  4. Canessa M, Adragna N, Solomon HS, Conolly TM, Tosteson DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. New Engl J Med 302:772–776

    Google Scholar 

  5. Canessa M, Bize I, Solomon H, Adragna N, Tosteson DC, Dagher G, Garay R, Meyer P (1981) Na countertransport and cotransport in human red cells: function, dysfunction and genes in essential hypertension. Clin Exp Hypertens 3:783–795

    Google Scholar 

  6. Crabos M, Wainer IM, Cloix JF (1984) Measurement of endogenous Na+, K+-ATPase inhibitors in human plasma and urine using high performance liquid chromatography. FEBS Lett 176:223–228

    Google Scholar 

  7. Duhm J, Göbel BO, Lorenz R, Weber PC (1982) Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part II: A simple uptake test applied to normotensive and essential hypertensive individuals. Hypertension 4:477–482

    Google Scholar 

  8. Ficoll-Paque™. For in vitro isolation of lymphocytes. Pharmacia Fine Chemicals, Uppsala, Sweden

  9. Fishman MC (1979) Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sci USA 76:4661–4663

    Google Scholar 

  10. Forrester T, Alleyne GAO (1981) Sodium, potassium and rate constants for sodium efflux in leukocytes from hypertensive Jamaicans. Br Med J 283:5–7

    Google Scholar 

  11. Garay RP, Dagher G, Pernollet MG, Devynck MA, Meyer P (1980) Inherited defect in a (Na-K) cotransport system in erythrocytes from essential hypertensive patients. Nature 284:281–282

    Google Scholar 

  12. Glynn IM, Karlish SJD (1975) The sodium pump. Annu Rev Physiol 37:13–55

    Google Scholar 

  13. Gruber KA, Rudel LL, Bullock BC (1982) Increased circulating levels of an endogenous digoxin-like factor in hypertensive monkeys. Hypertension 4:348–354

    Google Scholar 

  14. Hamlyn JM, Ringel R, Schaeffer J, Levinson PD, Hamilton BP, Kowarski AA, Blaustein MP (1982) A circulating inhibitor of (Na++K+)-ATPase associated with essential hypertension. Nature 300:650–652

    Google Scholar 

  15. Haddy FJ, Pamnani MB (1984) The vascular Na+−K+ pump in low renin hypertension. J Cardiovasc Pharmacol 6:S61-S74

    Google Scholar 

  16. Harris R, Ukaejiofo EO (1970) Tissue typing using a routine one-step lymphocytes separation technique. Br J Haematol 18:229–235

    Google Scholar 

  17. Haupert GT, Sancho JM (1979) Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sci USA 76:4658–4660

    Google Scholar 

  18. Henning G, Cloix JF (1983) Chromatographie d'affinité pour la détection d'un inhibiteur endogène humain de la Na+, K+-ATPase. CR Acad Sc Paris 297: Série III, 295–298

    Google Scholar 

  19. Hilton PJ, Patrick J (1973) Sodium and potassium flux rates in normal human lymphocytes in an artificial extracellular fluid. Clin Sci 44:439–445

    Google Scholar 

  20. Jørgensen PL (1974) Purification and characterization of (Na++K+)-ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta 356:36–52

    Google Scholar 

  21. Kramer HJ, Krück F (1982) Störung des Membran-Transportes bei der Hypertonie. Münch Med Wochenschr 124:1055–1060

    Google Scholar 

  22. Kuske R, Renner D, Schoner W (1984) Demonstration of an inhibitor of the sodium pump of human lymphocytes in the serum of patients with essential hypertension. Biomed Biochim Acta 43:S21-S22

    Google Scholar 

  23. Lichstein D, Samuelov S (1980) Endogenous “ouabainlike” activity in rat brain. Biochem Biophys Res Commun 96:1518–1523

    Google Scholar 

  24. MacGregor GA, Fenton S, Alaghband-Zadeh J, Markandu N, Roulston JE, De Wardener HE (1981) Evidence for a raised concentration of a circulating sodium transport inhibitor in essential hypertension. Br Med J 283:1355–1360

    Google Scholar 

  25. Martin J, Doty DM (1949) Determination of inorganic phosphate: Modification of isobutyl alcohol procedure. Anal Chem 21:965–967

    Google Scholar 

  26. Morgan T, Meyers J, Fitzgibbon W (1981) Sodium intake, blood pressure and red cell sodium efflux. Clin Exp Hypertens 3:641–653

    Google Scholar 

  27. Postnov YV, Orlov SN, Shevchenko A, Adler AM (1977) Altered sodium permeability, calcium binding and Na-K-ATPase activity in the red cell membrane in essential hypertension. Pflüger's Arch 371:263–269

    Google Scholar 

  28. Poston L, Sewell RB, Wilkinson SP, Richardson PJ, Williams R, Clarkson EM, MacGregor GA, De Wardener HE (1981) Evidence for a circulating sodium transport inhibitor in essential hypertension. Br Med J 282:847–849

    Google Scholar 

  29. Schoner W, von Ilberg C, Kramer R, Seubert W (1967) On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. I. Purification and properties of Na+- and K+-activated ATPase from ox brain. Eur J Biochem 1:334–343

    Google Scholar 

  30. Thomas RD, Edmondson RPS, Hilton PJ, Jones NF (1975) Abnormal sodium transport in leucocytes from patients with essential hypertension. Clin Sci Mol Med 48:169s-170s

    Google Scholar 

  31. Walter U (1982) ATPase Aktivität und Natriumtransport an Erythrocyten bei essentieller Hypertonie. Klin Wochenschr 60:607–616

    Google Scholar 

  32. Wambach G, Helber A, Bonner G, Hummerich W (1979) Natrium-Kalium-Adenosintriophosphatase-Aktivität in Erythrocytenghosts von Patienten mit essentieller Hypertonie. Klin Wochenschr 57:169–172

    Google Scholar 

  33. Wessels F, Junge-Hülsing G, Losse H (1967) Untersuchungen zur Natriumpermeabilität der Erythrocyten bei Hypertonikern und Normotonikern mit familiärer Hochdruckbelastung. Z Kreislaufforsch 56:374–380

    Google Scholar 

  34. Woods JL, Beevers DG, West M (1981) Familial abnormality of erythrocyte cation transport in essential hypertension. Br Med J 282:1186–1188

    Google Scholar 

  35. Zideck W, Losse H, Dorst KG, Zumkley H, Vetter H (1982) Intracellular sodium and calcium in essential hypertension. Klin Wochenschr 60:859–862

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper contains an essential part of the thesis of K.M. presented to the Fachbereich Veterinärmedizin, Giessen

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (Scho 139/16-2) and by the Fonds der Chemischen Industrie, Frankfurt/Main

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreth, K., Kuske, R., Renner, D. et al. Blood pressure in essential hypertension correlates with the concentration of a circulating inhibitor of the sodium pump. Klin Wochenschr 64, 239–244 (1986). https://doi.org/10.1007/BF01711656

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01711656

Key words

Navigation