Skip to main content
Log in

Severity of multiple organ failure (MOF) but not of sepsis correlates with irreversible platelet degranulation

Schweregrad des Multiorganversagens (MOV) jedoch nicht der Sepsis korreliert mit irreversibler Degranulation zirkulierender Thrombozyten

  • Originalia
  • Published:
Infection Aims and scope Submit manuscript

Summary

Multiple hemostatic changes occur in sepsis and multiple organ failure (MOF). To evaluate the role of platelets in patients with sepsis and MOF, we examined changes in surface glycoproteins on circulating platelets of 14 patients with suspected sepsis and MOF. The severity of sepsis and MOF was assessed by the Elebute and APACHE II scoring systems, respectively. Using flow cytometric techniques and platelet specific monoclonal antibodies, platelet surface expression of fibrinogen receptor on GPIIb-IIIa, of von Willebrand Factor receptor GPIb, and of granule glycoproteins (thrombospondin (TSP), GMP-140, GP53) was measured. Plasma membrane expression of GPIIb-IIIa and GPIb on circulating platelets was not affected by sepsis or MOF. Septic patients, however, showed a significantly elevated fibrinogen receptor activity (LIBS1 expression) (p<0.05) that correlated with severity of disease (r=0.597, p=0.043). No significant change in surface expression of granule glycoproteins (TSP, GMP-140, GP53) was noted in septic patients. In contrast, degranulation of granule glycoproteins was significantly elevated in MOF (p<0.05) which correlated well with severity of MOF (GMP-140, r=0.611, p=0.013; TSP, r=0.643, p=0.026). We speculate that platelets in sepsis circulate in a hyperaggregable but still reversible state that results in increased risk of microthrombotic events. In the course of the disease, irreversible platelet degranulation of adhesion molecules occurs that may play an important role in the development of MOF.

Zusammenfassung

Ziel der vorliegenden Pilotstudie war es, die Thrombozytenfunktion von 14 Intensivpatienten mit unterschiedlicher Ausprägung von Sepsis und Multiorganversagen (MOV) zu untersuchen. Schweregrad der Sepsis und des MOV wurde anhand intensivmedizinischer Scoresysteme (APACHE II, Elebute) beurteilt. Die Thrombozytenfunktion wurde durch durchflußzytometrische Bestimmung von membranständigen Glykoproteinen (GPIIb-IIIa, GPIb, Thrombospondin (TSP), GMP-140, GP53) untersucht. Weder Sepsis noch MOV beeinflußten die Oberflächen-expression von GPIIb-IIIa oder GPIb. Die Aktivierung des Fibrinogenrezeptors war jedoch bei Sepsis deutlich erhöht (p<0.05) und korrelierte signifikant mit dem Schweregrad der Erkrankung (r=0,597, p=0,043). Eine signifikant gesteigerte Degranulation der Thrombozyten bei Sepsis konnte jedoch nicht beobachtet werden. Im Gegensatz dazu war die thrombozytäre Freisetzung von Granula-Glykoproteinen (TSP, GMP-140, GP53) bei MOV deutlich erhöht (p<0,05) und korrelierte mit dem Schweregrad der Erkrankung (GMP-140, r=0,611, p=0,013; TSP, r=0,643, p=0,026). Die Ergebnisse dieser Arbeit zeigen, daß Blutplättchen in Patienten mit Sepsis in einem aktivierten jedoch noch reversiblen Aggregationszustand zirkulieren (Aktivierung des Fibrinogenrezeptors), einhergehend mit einem erhöhten Risiko von Mikrothrombosen. Im Laufe der Erkrankung kann es zur gesteigerten Freisetzung und Oberflächenexpression von thrombozytären Glykoproteinen kommen, die eine entscheidende pathophysiologische Rolle in der Entwicklung von Mikrozirkulationsstörungen und MOV spielen könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machiedo, G. W., Loverme, P. J., McGovern, P. J., Blackwood, J. M. Patterns of mortality in a surgical intensive care unit. Surg. Gyn. Obst. 152 (1981) 757–759.

    Google Scholar 

  2. Knaus, W. A., Draper, E. A., Wagner, D. P., Zimmermann, J. E. Prognosis in acute organ-system failure. Annals Surg. 202 (1985) 685–693.

    Google Scholar 

  3. Barton, R., Cerra, F. B. The hypermetabolism multiple organ failure syndrome. Chest 96 (1989) 1153–1159.

    Google Scholar 

  4. Saldeen, T. Clotting, microembolism, and inhibition of fibrinolysis in adult respiratory distress. Surg. Clin. North Am. 63 (1983) 285–304.

    Google Scholar 

  5. Parker, M. M., Parrillo, J. E. Septic shock: hemodynamics and pathogenesis. JAMA 250 (1983) 3324–3327.

    Google Scholar 

  6. Parrillo, J. E., Parker, M. M., Natanson, C., Suffredini, A. F., Danner, R. L., Connion, R. E., Ognigene, F. P. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann. Int. Med. 113 (1990) 227–242.

    Google Scholar 

  7. Vaage, J. Intravascular platelet aggregation and acute respiratory insufficiency. Circ. Shock. 122 (1977) 279–290.

    Google Scholar 

  8. Schneider, R. C., Zapol, W. M., Carvalho, A. C. Platelet consumption and sequestration in severe acute respiratory distress syndrome. Am. Rev. Respir. Dis. 122 (1980) 445–451.

    Google Scholar 

  9. George, J. N., Pickett, E. B., Saucerman, S., McEver, R. P., Kunicki, T. J., Kieffer, N., Newman, P. J. Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane micro-particles in normal subjects, and observation in patients during adult respiratory distress syndrome and cardiac surgery. J. Clin. Invest. 78 (1986) 340–348.

    Google Scholar 

  10. Schirmer, W. J., Fry, D. E.: Microcirculatory arrest. In:Frey, D. E.: (ed.): Multiple system organ failure — pathogenesis and management. Mosby-Yearbook, Inc. 1992, pp. 73–85.

  11. George, J. N., Nurden, A. T., Phillips, D. R. Molecular defects in interactions of platelets with the vessel wall. N. Engl. J. Med. 311 (1984) 1084–1098.

    Google Scholar 

  12. Ginsberg, M. H., Loftus, J. C., Plow, E. F. Cytoadhesins, integrins, and platelets. Thromb. Haemostasis 59 (1988) 1–6.

    Google Scholar 

  13. Ginsberg, M. H., Frelinger, A. L., Lam, S. C. T., Forsyth, J., McMillan, R., Plow, E. F., Shattil, S. J. Analysis of platelet aggregation disorders based on flow cytometric analysis of platelet membrane glycoprotein IIb-IIIa with conformation specific monoclonal antibodies. Blood 76 (1990) 2017–2023.

    Google Scholar 

  14. Gawaz, M. P., Loftus, J. C., Bajt, M. L., Frojmovic, M. M., Plow, E. F., Ginsberg, M. H. Ligand binding mediates integrin αIIbβ3 (platelet GPIIb-IIIa) dependent homotypic and heterotypic cell-cell interaction. J. Clin. Invest. 88 (1991) 1128–1134.

    Google Scholar 

  15. Asch, A. S., Nachman, R. L.: Thrombospondin: phenomenology to function. In:Coller, B. S.: (ed.): Progress in hemostasis and thrombosis. W. B. Saunders Company 1989, Vol. 9, pp. 157–176.

  16. Stenberg, D. E., McEver, R. P., Shuman, M. A., Jacques, Z. V., Bainton, D. F. A platelet membrane glycoprotein (GMP-140) is expressed on the plasma membrane after activation. J. Cell. Biol. 101 (1985) 880–886.

    Google Scholar 

  17. Nieuwenhuis, H. K., Oosterhoutvon, J. J. G., Rosemuller, E., Iwaarden van, F., Sixma, J. J. Studies with a monoclonal antibody against activated platelets. Evidence that a secreted Mw 53,000 lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 70 (1987) 838–845.

    Google Scholar 

  18. Leung, L., Nachman, R. Molecular mechanisms of platelet aggregation. Ann. Rev. Med. 37 (1986) 179–186.

    Google Scholar 

  19. Hamburger, S. A., McEver, R. P. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 75 (1990) 550–555.

    Google Scholar 

  20. Rinder, H. M., Bonan, J. L., Rinder, C. S., Ault, K. A., Smith, B. R. Activated and unactivated platelet adhesion to monocytes and neutrophils. Blood 78 (1991) 1760–1769.

    Google Scholar 

  21. Pilz, G., Gurniak, T., Bujdoso, O., Werdan, K. A BASIC program for calculation of APACHE II and Elebute scores and sepsis evaluation in intensive care medicine. Comput. Biol. Med. 21 (1991) 143–159.

    Google Scholar 

  22. Knaus, W. A., Draper, E. A., Wagner, D. P., Zimmerman, J. E. APACHE II: a severity of disease classification system. Crit. Care Med. 13 (1985) 818–829.

    Google Scholar 

  23. Elebute, E. A., Stoner, H. B. The grading of sepsis. Br. J. Surg. 70 (1983) 29–31.

    Google Scholar 

  24. Grundmann, R., Kipping, N., Wesoly, C. Der Sepsisscore von Elebute und Stoner zur Definition der postoperativen Sepsis auf der Intensivstation. Intensivmedizin 25 (1988) 268–273.

    Google Scholar 

  25. Gawaz, M. P., Ward, R. A. Effects of hemodialysis on platelet-derived thrombospondin. Kidney Int. 40 (1991) 257–265.

    Google Scholar 

  26. Tschöpe, D., Schwippert, B. DIII-Assay/Bestimmung von Aktivierungsmarkern auf Thrombozyten im Durchflußzytometer. In:Schmitz, G., Rothe, G. (eds.): Durchflußzytometrie in der klinischen Zelldiagnostik. Schattauer Verlag Stuttgart, New York 1994, pp. 433–442.

    Google Scholar 

  27. Gawaz, M. P., Bogner, C., Gurland, H. J. Flow cytometric analysis of mepacrine labelled platelets in patients with end-stage renal failure. Hacmostasis 23 (1993) 284–292.

    Google Scholar 

  28. Gawaz, M. P., Bogner, C. Changes in platelet membrane glycoproteins and platelet-leukocyte interaction during hemodialysis. Clin. Invest. 72 (1994) 424–429.

    Google Scholar 

  29. Gawaz, M. P., Dobos, G., Späth, M., Schollmeyer, P., Gurland, H. J., Mujais, S. J. Impaired function of platelet membrane glycoprotein IIb-IIIa in end-stage renal disease. J. Am. Soc. Nephrol. 5 (1994) 36–46.

    Google Scholar 

  30. Gawaz, M. P., Mujais, S., Schmidt, B., Gurland, H. J. Platelet-leukocyte aggregation during hemodialysis. Kidney Int. 46 (1994) 489–495.

    Google Scholar 

  31. Böck, M., Gawaz, M. P., Dietzler, A., Heim, M. U., Mempel, W. Single-donor platelet concentrates: changes of surface glycoproteins during storage. Haemostasis 24 (1994) 230–235.

    Google Scholar 

  32. Gawaz, M. P., Mayinger, P., Neumann, F. J. Effect of ATP on ligand recognition of platelet fibrinogen receptor on GPIIb-IIIa. Am. J. Physiol. 267 (1994) H1098-H1106.

    Google Scholar 

  33. Gawaz, M., Ott, I., Reininger, A. J., Neumann, F. J.: Effects of magnesium on platelet aggregation and adhesion. Magnesium modulates surface expression of glycoproteins on plateletsin vitro andex vivo. Thromb. Haemost. 72 (1994) (in press).

  34. Saba, T. M., Fortune, J. B., Wallace, J. R.: Microaggregation hypothesis of multiple system organ failure. In:Frey, D. E.: (ed.): Multiple system organ failure — pathogenesis and management. Mosby-Yearbook, Inc. 1992, pp. 25–41.

  35. Heffner, J. E., Sahn, S. A., Repine, J. E. The role of platelets in adult respiratory distress syndrome. Am. Rev. Respir. Dis. 135 (1987) 482–492.

    Google Scholar 

  36. Neame, P. B., Kelton, J. G., Walker, I. R., Stewart, I. O., Nossel, H. L., Hirsh, J. Thrombocytopenia in septicemia: the role of disseminated intravascular coagulation. Blood 56 (1980) 88–92.

    Google Scholar 

  37. Kelton, J. G., Neame, P. B., Gauldie, J., Hirsh, J. Elevated platelet-associated IgG in the thrombocytopenia of septicemia. N. Engl. J. Med. 300 (1979) 760–764.

    Google Scholar 

  38. Siess, W. Molecular mechanisms of platelet activation. Physiol. Rev. 69 (1989) 50–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawaz, M., Fateh-Moghadam, S., Pilz, G. et al. Severity of multiple organ failure (MOF) but not of sepsis correlates with irreversible platelet degranulation. Infection 23, 16–23 (1995). https://doi.org/10.1007/BF01710051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01710051

Keywords

Navigation